Infinitely many solutions for linearly coupled Schrodinger systems in R3

被引:0
作者
Wang, Lushun [1 ]
Zeng, Dehua [1 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
linearly coupled Schrodinger system; Lyapunov-Schmidt reduction method; nonradial solutions; slow decaying rate; synchronized solutions; POSITIVE SOLUTIONS; EQUATIONS; SOLITONS;
D O I
10.1002/mma.10239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following linearly coupled nonlinear Schrodinger system: { -Delta u + P(|y|)u = u(3) +lambda(|y|)v in R-3, -Delta v + Q(|y|)v = v(3) + lambda(|y|)u in R-3, (A) u, v is an element of H-1(R-3), where P(|y|), Q(|y|), and lambda(|y|) are radial, positive, and continuous and satisfying that lim(|y|->infinity) P(|y|) = lim(|y|->infinity) Q(|y|) = 1, lim(|y|->infinity) lambda(|y|) = lambda is an element of(0, 1). When lambda(|y|) < min{P(|y|), Q(|y|)} and P(|y|), Q(|y|), lambda(|y|) satisfy some weak power decay condition at infinity; we show that problem (.) has infinitelymany nonradial positive solutions by using the Lyapunov-Schmidt reduction method.
引用
收藏
页码:13791 / 13812
页数:22
相关论文
共 16 条
[1]   NOVEL SOLITON STATES AND BIFURCATION PHENOMENA IN NONLINEAR FIBER COUPLERS [J].
AKHMEDIEV, N ;
ANKIEWICZ, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (16) :2395-2398
[2]   Multi-bump solitons to linearly coupled systems of nonlinear Schrodinger equations [J].
Ambrosetti, A. ;
Colorado, E. ;
Ruiz, D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :85-112
[3]   Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn [J].
Ambrosetti, Antonio ;
Cerami, Giovanna ;
Ruiz, David .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2816-2845
[4]  
최신호, 1990, [The Studies in Korean Literature, 한국문학연구], V13, P1
[5]   Solutions with multiple peaks for nonlinear elliptic equations [J].
Cao, DM ;
Noussair, ES ;
Yan, SS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :235-264
[6]  
Chen ZJ, 2014, P AM MATH SOC, V142, P323
[7]  
Gidas B., 1981, MATH ANANLYSIS APPLO, V7A, P369
[8]  
Jin K., 2023, J DYN CONTROL SYST, V2023, P1
[9]   New synchronized solutions for linearly coupled Schrodinger systems [J].
Jin, Ke ;
Wang, Lushun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (02)
[10]  
KWONG MK, 1989, ARCH RATION MECH AN, V105, P243