Application of supervised machine learning to predict the enhanced gas recovery by CO 2 injection in shale gas reservoirs
被引:6
作者:
Mansi, Moataz
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, AustraliaCurtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, Australia
Mansi, Moataz
[1
]
Almobarak, Mohamed
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, AustraliaCurtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, Australia
Almobarak, Mohamed
[1
]
Ekundayo, Jamiu
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, AustraliaCurtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, Australia
Ekundayo, Jamiu
[1
]
Lagat, Christopher
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, AustraliaCurtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, Australia
Lagat, Christopher
[1
]
Xie, Quan
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, AustraliaCurtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, Australia
Xie, Quan
[1
]
机构:
[1] Curtin Univ, Discipline Petr Engn, WA Sch Mines Minerals Energy & Chem Engn, Bentley, WA, Australia
The technique of Enhanced Gas Recovery by CO2 injection (CO2-EGR) into shale reservoirs has brought increasing attention in the recent decade. CO2-EGR is a complex geophysical process that is controlled by several parameters of shale properties and engineering design. Nevertheless, more challenges arise when simulating and predicting CO2/CH4 displacement within the complex pore systems of shales. Therefore, the petroleum industry is in need of developing a cost-effective tool/approach to evaluate the potential of applying CO2 injection to shale reservoirs. In recent years, machine learning applications have gained enormous interest due to their high-speed performance in handling complex data and efficiently solving practical problems. Thus, this work proposes a solution by developing a supervised machine learning (ML) based model to preliminary evaluate CO2-EGR efficiency. Data used for this work was drawn across a wide range of simulation sensitivity studies and experimental investigations. In this work, linear regression and artificial neural networks (ANNs) implementations were considered for predicting the incremental enhanced CH4. Based on the model performance in training and validation sets, our accuracy comparison showed that (ANNs) algorithms gave 15% higher accuracy in predicting the enhanced CH4 compared to the linear regression model. To ensure the model is more generalizable, the size of hidden layers of ANNs was adjusted to improve the generalization ability of ANNs model. Among ANNs models presented, ANNs of 100 hidden layer size gave the best predictive performance with the coefficient of determination (R2) of 0.78 compared to the linear regression model with R2 of 0.68. Our developed MLbased model presents a powerful, reliable and cost-effective tool which can accurately predict the incremental enhanced CH4 by CO2 injection in shale gas reservoirs. (c) 2023 Southwest Petroleum University. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).
机构:
Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Discipline Petr Engn, Bentley, WA 6102, AustraliaCurtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Discipline Petr Engn, Bentley, WA 6102, Australia
Mansi, Moataz
Almobarak, Mohamed
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Discipline Petr Engn, Bentley, WA 6102, AustraliaCurtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Discipline Petr Engn, Bentley, WA 6102, Australia
Almobarak, Mohamed
Lagat, Christopher
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Discipline Petr Engn, Bentley, WA 6102, AustraliaCurtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Discipline Petr Engn, Bentley, WA 6102, Australia
Lagat, Christopher
Xie, Quan
论文数: 0引用数: 0
h-index: 0
机构:
Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Discipline Petr Engn, Bentley, WA 6102, AustraliaCurtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Discipline Petr Engn, Bentley, WA 6102, Australia
机构:
Chengdu Univ Technol, Coll Energy Resource, Chengdu 610059, Sichuan, Peoples R China
Chengdu Univ Technol, State Key Lab Oil & Gas Reservoir Geol & Exploitat, Chengdu 610059, Sichuan, Peoples R ChinaChengdu Univ Technol, Coll Energy Resource, Chengdu 610059, Sichuan, Peoples R China
Tang, Chao
Zhou, Wen
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Coll Energy Resource, Chengdu 610059, Sichuan, Peoples R China
Chengdu Univ Technol, State Key Lab Oil & Gas Reservoir Geol & Exploitat, Chengdu 610059, Sichuan, Peoples R ChinaChengdu Univ Technol, Coll Energy Resource, Chengdu 610059, Sichuan, Peoples R China
Zhou, Wen
Chen, Zhangxin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, CanadaChengdu Univ Technol, Coll Energy Resource, Chengdu 610059, Sichuan, Peoples R China
Chen, Zhangxin
Wei, Jiabao
论文数: 0引用数: 0
h-index: 0
机构:
Sinopec Shengli Oilfield Co, Dongying 257000, Shandong, Peoples R ChinaChengdu Univ Technol, Coll Energy Resource, Chengdu 610059, Sichuan, Peoples R China
机构:
China Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hube, Wuhan 430074, Peoples R China
China Univ Geosci, Key Lab Tecton & Petr Resources, Minist Educ, Wuhan 430074, Peoples R China
Arusha Tech Coll, POB 296, Arusha, TanzaniaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hube, Wuhan 430074, Peoples R China
Omari, Athumani
Wang, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Res Inst Petr Explorat & Dev, Beijing 100029, Peoples R ChinaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hube, Wuhan 430074, Peoples R China
Wang, Chao
Li, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Res Inst Petr Explorat & Dev, Beijing 100029, Peoples R China
China Natl Oil & Gas Strateg Res Ctr, Beijing 100083, Peoples R ChinaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hube, Wuhan 430074, Peoples R China
Li, Yang
Xu, Xingguang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hube, Wuhan 430074, Peoples R China
China Univ Geosci, Key Lab Tecton & Petr Resources, Minist Educ, Wuhan 430074, Peoples R ChinaChina Univ Geosci, Key Lab Theory & Technol Petr Explorat & Dev Hube, Wuhan 430074, Peoples R China
机构:
Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, EMS Energy Inst, University Pk, PA 16802 USAPenn State Univ, John & Willie Leone Family Dept Energy & Mineral, EMS Energy Inst, University Pk, PA 16802 USA
Li, Xiang
Elsworth, Derek
论文数: 0引用数: 0
h-index: 0
机构:Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, EMS Energy Inst, University Pk, PA 16802 USA