Automatic Modulation Classification for MIMO System Based on the Mutual Information Feature Extraction

被引:0
|
作者
Ussipov, N. [1 ]
Akhtanov, S. [1 ]
Zhanabaev, Z. [1 ]
Turlykozhayeva, D. [1 ]
Karibayev, B. [2 ]
Namazbayev, T. [1 ]
Almen, D. [1 ]
Akhmetali, A. [1 ]
Tang, Xiao [3 ]
机构
[1] Al Farabi Kazakh Natl Univ, Fac Phys & Technol, Alma Ata 050040, Kazakhstan
[2] Almaty Univ Power Engn & Telecommun, Dept Telecommun Engn, Alma Ata 050013, Kazakhstan
[3] Northwestern Polytechin Univ, Sch Elect & Informat, Xian 710071, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Automatic modulation classification; classifier; feature extraction; mutual information; entropy; complex MIMO signals; RECOGNITION;
D O I
10.1109/ACCESS.2024.3400448
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic Modulation Classification (AMC) is an essential technology that is widely applied into various communications scenarios. In recent years, many Machine Learning and Deep-Learning methods have been introduced into AMC, and a lot of them apply different approaches to eliminate interference in complex Multiple-Input and Multiple-Output (MIMO) signals and improve classification performance. However, in practical communication systems, the perfect elimination of MIMO signal interference is impossible, and therefore classification performance suffers. In this paper, we propose a new AMC algorithm for MIMO system based on mutual information (MI) features extraction, which does not require a large amount of training data and the elimination of MIMO signal interference. In this approach, features based on mutual information are extracted using In-Phase and Quadrature (IQ) constellation diagrams of MIMO signals, which have not been explored previously. Our method can be effective since mutual information considers the interdependencies among variables and measures how much information about one variable reduces uncertainty about another, providing a valuable perspective for extracting higher-level and interesting features from the data. The effectiveness of our method is evaluated on several model and real-world datasets, and its applicability is proven.
引用
收藏
页码:68463 / 68470
页数:8
相关论文
共 50 条
  • [21] Automatic defects classification and feature extraction optimization
    Kuhlenkoetter, Bernd
    Krewet, Carsten
    Zhang, Xiang
    COMPUTATIONAL INTELLIGENCE, THEORY AND APPLICATION, 2006, : 105 - +
  • [22] Study of ECG Feature Extraction for Automatic Classification Based on Wavelet Transform
    Ge Dingfei
    PROCEEDINGS OF 2012 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, VOLS I-VI, 2012, : 500 - 503
  • [23] Mutual Information-Driven Feature Reduction for Hyperspectral Image Classification
    Islam, Md Rashedul
    Ahmed, Boshir
    Hossain, Md Ali
    Uddin, Md Palash
    SENSORS, 2023, 23 (02)
  • [24] Input Feature Selection Method Based on Feature Set Equivalence and Mutual Information Gain Maximization
    Wang, Xinzheng
    Guo, Bing
    Shen, Yan
    Zhou, Chimin
    Duan, Xuliang
    IEEE ACCESS, 2019, 7 : 151525 - 151538
  • [25] Maximum mutual information for feature extraction from graph-structured data: Application to Alzheimer’s disease classification
    Jiawei Yang
    Shaoping Wang
    Teresa Wu
    Applied Intelligence, 2023, 53 : 1870 - 1886
  • [26] Maximization of mutual information for supervised linear feature extraction
    Leiva-Murillo, Jose Miguel
    Artes-Rodriguez, Antonio
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (05): : 1433 - 1441
  • [27] Fault Diagnosis of Gearbox by FastICA and Residual Mutual Information Based Feature Extraction
    Jiao Weidong
    ICIA: 2009 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, VOLS 1-3, 2009, : 907 - 911
  • [28] Accuracy Analysis of Feature-Based Automatic Modulation Classification via Deep Neural Network
    Ge, Zhan
    Jiang, Hongyu
    Guo, Youwei
    Zhou, Jie
    SENSORS, 2021, 21 (24)
  • [29] An Overview of Methods for Feature Selection Based on Mutual Information for Stream Data Classification
    Wankhade, Kapil
    Rane, Dhiraj
    Thool, Ravindra
    2013 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT 2013), 2013, : 630 - 634
  • [30] Training Images Generation for CNN Based Automatic Modulation Classification
    Zhang, Wei-Tao
    Cui, Dan
    Lou, Shun-Tian
    IEEE ACCESS, 2021, 9 : 62916 - 62925