Automatic Modulation Classification for MIMO System Based on the Mutual Information Feature Extraction
被引:0
|
作者:
Ussipov, N.
论文数: 0引用数: 0
h-index: 0
机构:
Al Farabi Kazakh Natl Univ, Fac Phys & Technol, Alma Ata 050040, KazakhstanAl Farabi Kazakh Natl Univ, Fac Phys & Technol, Alma Ata 050040, Kazakhstan
Ussipov, N.
[1
]
Akhtanov, S.
论文数: 0引用数: 0
h-index: 0
机构:
Al Farabi Kazakh Natl Univ, Fac Phys & Technol, Alma Ata 050040, KazakhstanAl Farabi Kazakh Natl Univ, Fac Phys & Technol, Alma Ata 050040, Kazakhstan
Akhtanov, S.
[1
]
Zhanabaev, Z.
论文数: 0引用数: 0
h-index: 0
机构:
Al Farabi Kazakh Natl Univ, Fac Phys & Technol, Alma Ata 050040, KazakhstanAl Farabi Kazakh Natl Univ, Fac Phys & Technol, Alma Ata 050040, Kazakhstan
Zhanabaev, Z.
[1
]
论文数: 引用数:
h-index:
机构:
Turlykozhayeva, D.
[1
]
论文数: 引用数:
h-index:
机构:
Karibayev, B.
[2
]
论文数: 引用数:
h-index:
机构:
Namazbayev, T.
[1
]
论文数: 引用数:
h-index:
机构:
Almen, D.
[1
]
论文数: 引用数:
h-index:
机构:
Akhmetali, A.
[1
]
论文数: 引用数:
h-index:
机构:
Tang, Xiao
[3
]
机构:
[1] Al Farabi Kazakh Natl Univ, Fac Phys & Technol, Alma Ata 050040, Kazakhstan
[2] Almaty Univ Power Engn & Telecommun, Dept Telecommun Engn, Alma Ata 050013, Kazakhstan
[3] Northwestern Polytechin Univ, Sch Elect & Informat, Xian 710071, Peoples R China
Automatic Modulation Classification (AMC) is an essential technology that is widely applied into various communications scenarios. In recent years, many Machine Learning and Deep-Learning methods have been introduced into AMC, and a lot of them apply different approaches to eliminate interference in complex Multiple-Input and Multiple-Output (MIMO) signals and improve classification performance. However, in practical communication systems, the perfect elimination of MIMO signal interference is impossible, and therefore classification performance suffers. In this paper, we propose a new AMC algorithm for MIMO system based on mutual information (MI) features extraction, which does not require a large amount of training data and the elimination of MIMO signal interference. In this approach, features based on mutual information are extracted using In-Phase and Quadrature (IQ) constellation diagrams of MIMO signals, which have not been explored previously. Our method can be effective since mutual information considers the interdependencies among variables and measures how much information about one variable reduces uncertainty about another, providing a valuable perspective for extracting higher-level and interesting features from the data. The effectiveness of our method is evaluated on several model and real-world datasets, and its applicability is proven.
机构:
Univ New S Wales, Australian Def Force Acad, Sch Engn & Informat Technol, Canberra, ACT 2600, AustraliaUniv New S Wales, Australian Def Force Acad, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
Hossain, Md Ali
Pickering, Mark
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Australian Def Force Acad, Sch Engn & Informat Technol, Canberra, ACT 2600, AustraliaUniv New S Wales, Australian Def Force Acad, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
Pickering, Mark
Jia, Xiuping
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Australian Def Force Acad, Sch Engn & Informat Technol, Canberra, ACT 2600, AustraliaUniv New S Wales, Australian Def Force Acad, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
Jia, Xiuping
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS),
2011,
: 1720
-
1723
机构:
Rudjer Boskovic Inst, Div Laser & Atom Res & Dev, Zagreb 10000, Croatia
Rudjer Boskovic Inst, Zagreb, CroatiaRudjer Boskovic Inst, Div Laser & Atom Res & Dev, Zagreb 10000, Croatia
Jukic, Ante
Filipovic, Marko
论文数: 0引用数: 0
h-index: 0
机构:
Rudjer Boskovic Inst, Div Laser & Atom Res & Dev, Zagreb 10000, CroatiaRudjer Boskovic Inst, Div Laser & Atom Res & Dev, Zagreb 10000, Croatia
机构:
Beijing Univ Technol, Int WIC Inst, Beijing, Peoples R China
Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang, Peoples R ChinaBeijing Univ Technol, Int WIC Inst, Beijing, Peoples R China
Sun, Lin
Xu, Jiucheng
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang, Peoples R ChinaBeijing Univ Technol, Int WIC Inst, Beijing, Peoples R China