Deep learning-based multi-model prediction for disease-free survival status of patients with clear cell renal cell carcinoma after surgery: a multicenter cohort study

被引:5
作者
Chen, Siteng [1 ]
Gao, Feng [2 ]
Guo, Tuanjie [3 ]
Jiang, Liren [2 ]
Zhang, Ning [4 ]
Wang, Xiang [3 ]
Zheng, Junhua [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Renji Hosp, Dept Urol, Shanghai 200127, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Pathol, Sch Med, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Med, Shanghai Gen Hosp, Dept Urol, Shanghai 200127, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Med, Ruijin Hosp, Dept Urol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; multimodel; pathology; radiology; renal cell carcinoma; CANCER; SYSTEM;
D O I
10.1097/JS9.0000000000001222
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background: Although separate analysis of individual factor can somewhat improve the prognostic performance, integration of multimodal information into a single signature is necessary to stratify patients with clear cell renal cell carcinoma (ccRCC) for adjuvant therapy after surgery. Methods: A total of 414 patients with whole slide images, computed tomography images, and clinical data from three patient cohorts were retrospectively analyzed. The authors performed deep learning and machine learning algorithm to construct three single-modality prediction models for disease-free survival of ccRCC based on whole slide images, cell segmentation, and computed tomography images, respectively. A multimodel prediction signature (MMPS) for disease-free survival were further developed by combining three single-modality prediction models and tumor stage/grade system. Prognostic performance of the prognostic model was also verified in two independent validation cohorts. Results: Single-modality prediction models performed well in predicting the disease-free survival status of ccRCC. The MMPS achieved higher area under the curve value of 0.742, 0.917, and 0.900 in three independent patient cohorts, respectively. MMPS could distinguish patients with worse disease-free survival, with HR of 12.90 (95% CI: 2.443-68.120, P<0.0001), 11.10 (95% CI: 5.467-22.520, P<0.0001), and 8.27 (95% CI: 1.482-46.130, P<0.0001) in three different patient cohorts. In addition, MMPS outperformed single-modality prediction models and current clinical prognostic factors, which could also provide complements to current risk stratification for adjuvant therapy of ccRCC. Conclusion: Our novel multimodel prediction analysis for disease-free survival exhibited significant improvements in prognostic prediction for patients with ccRCC. After further validation in multiple centers and regions, the multimodal system could be a potential practical tool for clinicians in the treatment for ccRCC patients.
引用
收藏
页码:2970 / 2977
页数:8
相关论文
共 37 条
[1]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[2]   Extending the landscape of omics technologies by pathomics [J].
Buelow, Roman D. ;
Hoelscher, David L. ;
Costa, Ivan G. ;
Boor, Peter .
NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2023, 9 (01)
[3]   Comprehensive analysis of lncRNAs as biomarkers for diagnosis, prognosis, and treatment response in clear cell renal cell carcinoma [J].
Chao, Xiaoyu ;
Wang, Pei ;
Ma, Xiaoyu ;
Li, Zhenfen ;
Xia, Yubing ;
Guo, Ying ;
Ge, Linna ;
Tian, Linzhu ;
Zheng, Hong ;
Du, Yaowu ;
Li, Jitian ;
Zuo, Zhanjie ;
Xie, Longxiang ;
Guo, Xiangqian .
MOLECULAR THERAPY-ONCOLYTICS, 2021, 22 :209-218
[4]   Prognostic and predictive value of a pathomics signature in gastric cancer [J].
Chen, Dexin ;
Fu, Meiting ;
Chi, Liangjie ;
Lin, Liyan ;
Cheng, Jiaxin ;
Xue, Weisong ;
Long, Chenyan ;
Jiang, Wei ;
Dong, Xiaoyu ;
Sui, Jian ;
Lin, Dajia ;
Lu, Jianping ;
Zhuo, Shuangmu ;
Liu, Side ;
Li, Guoxin ;
Chen, Gang ;
Yan, Jun .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   Radiomics and artificial intelligence for precision medicine in lung cancer treatment [J].
Chen, Mitchell ;
Copley, Susan J. ;
Viola, Patrizia ;
Lu, Haonan ;
Aboagye, Eric O. .
SEMINARS IN CANCER BIOLOGY, 2023, 93 :97-113
[6]   Machine learning-based pathomics signature could act as a novel prognostic marker for patients with clear cell renal cell carcinoma [J].
Chen, Siteng ;
Jiang, Liren ;
Gao, Feng ;
Zhang, Encheng ;
Wang, Tao ;
Zhang, Ning ;
Wang, Xiang ;
Zheng, Junhua .
BRITISH JOURNAL OF CANCER, 2022, 126 (05) :771-777
[7]   Clinical use of machine learning-based pathomics signature for diagnosis and survival prediction of bladder cancer [J].
Chen, Siteng ;
Jiang, Liren ;
Zheng, Xinyi ;
Shao, Jialiang ;
Wang, Tao ;
Zhang, Encheng ;
Gao, Feng ;
Wang, Xiang ;
Zheng, Junhua .
CANCER SCIENCE, 2021, 112 (07) :2905-2914
[8]   Clinical use of a machine learning histopathological image signature in diagnosis and survival prediction of clear cell renal cell carcinoma [J].
Chen, Siteng ;
Zhang, Ning ;
Jiang, Liren ;
Gao, Feng ;
Shao, Jialiang ;
Wang, Tao ;
Zhang, Encheng ;
Yu, Hong ;
Wang, Xiang ;
Zheng, Junhua .
INTERNATIONAL JOURNAL OF CANCER, 2021, 148 (03) :780-790
[9]   Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma [J].
Choueiri, T. K. ;
Tomczak, P. ;
Park, S. H. ;
Venugopal, B. ;
Ferguson, T. ;
Chang, Y. -H. ;
Hajek, J. ;
Symeonides, S. N. ;
Lee, J. L. ;
Sarwar, N. ;
Thiery-Vuillemin, A. ;
Gross-Goupil, M. ;
Mahave, M. ;
Haas, N. B. ;
Sawrycki, P. ;
Gurney, H. ;
Chevreau, C. ;
Melichar, B. ;
Kopyltsov, E. ;
Alva, A. ;
Burke, J. M. ;
Doshi, G. ;
Topart, D. ;
Oudard, S. ;
Hammers, H. ;
Kitamura, H. ;
Bedke, J. ;
Perini, R. F. ;
Zhang, P. ;
Imai, K. ;
Willemann-Rogerio, J. ;
Quinn, D. I. ;
Powles, T. .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (08) :683-694
[10]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057