Distributed Hybrid Task Offloading in Mobile-Edge Computing: A Potential Game Scheme

被引:9
作者
Niu, Zhaocheng [1 ,2 ,3 ,4 ]
Liu, Hui [1 ,2 ,3 ,4 ]
Ge, Yiming [1 ,2 ,3 ,4 ]
Du, Junzhao [1 ,2 ,3 ,4 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Shaanxi, Peoples R China
[2] State Key Lab Satellite Nav Syst & Equipment Techn, Shijiazhuang, Peoples R China
[3] Minist Educ, Engn Res Ctr Blockchain Technol Applicat & Evaluat, Xian, Peoples R China
[4] Key Lab Smart Human Comp Interact & Wearable Techn, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Servers; Games; Resource management; Optimization; Energy consumption; Cloud computing; Computation offloading; device-to-device (D2D); game theory; Internet of Things (IoT); mobile-edge computing (MEC); RESOURCE-ALLOCATION; OPTIMIZATION; ANALYTICS; INTERNET;
D O I
10.1109/JIOT.2024.3366194
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile-edge computing introduces a novel computing paradigm for mobile devices (MDs), reducing execution latency and energy consumption by offloading tasks to edge servers or other idle MDs. In this article, we consider the utility optimization problem of two typical computing tasks, latency-sensitive tasks and latency-tolerant tasks, among multiple MDs and base stations (BSs). MDs can choose three computing modes to optimize utility: 1) local computing; 2) task allocation to BSs; and 3) task allocation to other MDs through device-to-device communication. To address this problem, we formalize it as a potential game for multi-MD multi-BS task offloading. Furthermore, we prove the existence of a Nash equilibrium for the modeled potential game and propose a task allocation scheme for hybrid tasks. This scheme maximizes both energy consumption utility and task execution utility by optimizing task offloading mode selection and task execution order scheduling. Simulation results show that our proposed scheme can substantially enhance user utility and has good scalability with the increase of MDs.
引用
收藏
页码:18698 / 18710
页数:13
相关论文
共 41 条
[1]   Mobile Edge Computing: A Survey [J].
Abbas, Nasir ;
Zhang, Yan ;
Taherkordi, Amir ;
Skeie, Tor .
IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (01) :450-465
[2]   Real-Time Video Analytics: The Killer App for Edge Computing [J].
Ananthanarayanan, Ganesh ;
Bahl, Paramvir ;
Bodik, Peter ;
Chintalapudi, Krishna ;
Philipose, Matthai ;
Ravindranath, Lenin ;
Sinha, Sudipta .
COMPUTER, 2017, 50 (10) :58-67
[3]   Heterogeneous Task Offloading and Resource Allocations via Deep Recurrent Reinforcement Learning in Partial Observable Multifog Networks [J].
Baek, Jungyeon ;
Kaddoum, Georges .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (02) :1041-1056
[4]   Toward Interconnected Virtual Reality: Opportunities, Challenges, and Enablers [J].
Bastug, Ejder ;
Bennis, Mehdi ;
Medard, Muriel ;
Debbah, Merouane .
IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (06) :110-117
[5]  
Benjebbour A, 2013, I S INTELL SIG PROC, P770, DOI 10.1109/ISPACS.2013.6704653
[6]   THE STATISTICAL-MECHANICS OF STRATEGIC INTERACTION [J].
BLUME, LE .
GAMES AND ECONOMIC BEHAVIOR, 1993, 5 (03) :387-424
[7]   Multiagent Deep Reinforcement Learning for Joint Multichannel Access and Task Offloading of Mobile-Edge Computing in Industry 4.0 [J].
Cao, Zilong ;
Zhou, Pan ;
Li, Ruixuan ;
Huang, Siqi ;
Wu, Dapeng .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) :6201-6213
[8]  
Cardoso J., 2004, WEB SEMANTICS J SCI, V1, P281, DOI [DOI 10.1016/J.WEBSEM.2004.03.001, 10.1016/j.websem.2004.03.001]
[9]   Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing [J].
Chen, Xu ;
Jiao, Lei ;
Li, Wenzhong ;
Fu, Xiaoming .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) :2827-2840
[10]   Decentralized Computation Offloading Game for Mobile Cloud Computing [J].
Chen, Xu .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (04) :974-983