Discovery and Characterization of Pyridoxal 5′-Phosphate-Dependent Cycloleucine Synthases

被引:6
|
作者
Abad, Abner N. D. [1 ]
Seshadri, Kaushik [1 ]
Ohashi, Masao [1 ]
Delgadillo, David A. [3 ]
de Moraes, Lygia S. [3 ]
Nagasawa, Kyle K. [2 ]
Liu, Mengting [1 ]
Johnson, Samuel [3 ]
Nelson, Hosea M. [3 ]
Tang, Yi [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Chem & Biochem, Los Angeles, CA 90095 USA
[3] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
ADENOSYL-L-METHIONINE; AMINO-ACIDS; BIOSYNTHETIC PATHWAYS; ENZYME; PEPTIDES; BLOCKS; DECARBOXYLATION; INHIBITOR; BETA;
D O I
10.1021/jacs.4c02142
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pyridoxal 5 '-phosphate (PLP)-dependent enzymes are the most versatile biocatalysts for synthesizing nonproteinogenic amino acids. alpha,alpha-Disubstituted quaternary amino acids, such as 1-aminocyclopentane-1-carboxylic acid (cycloleucine), are useful building blocks for pharmaceuticals. In this study, starting with the biosynthesis of fusarilin A, we discovered a family of PLP-dependent enzymes that can facilitate tandem carbon-carbon forming steps to catalyze an overall [3 + 2]-annulation. In the first step, the cycloleucine synthases use SAM as the latent electrophile and an in situ-generated enamine as the nucleophile for gamma-substitution. Whereas previously characterized gamma-replacement enzymes protonate the resulting alpha-carbon and release the acyclic amino acid, cycloleucine synthases can catalyze an additional, intramolecular aldol or Mannich reaction with the nucleophilic alpha-carbon to form the substituted cyclopentane. Overall, the net [3 + 2]-annulation reaction can lead to 2-hydroxy or 2-aminocycloleucine products. These studies further expand the biocatalytic scope of PLP-dependent enzymes.
引用
收藏
页码:14672 / 14684
页数:13
相关论文
共 50 条
  • [1] Pyridoxal 5'-phosphate-dependent catalytic antibody
    Gramatikova, SI
    Christen, P
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (48) : 30583 - 30586
  • [2] A pyridoxal 5′-phosphate-dependent Mannich cyclase
    Jinmin Gao
    Shaonan Liu
    Chen Zhou
    Darwin Lara
    Yike Zou
    Yang Hai
    Nature Catalysis, 2023, 6 : 476 - 486
  • [3] Exploring the pyridoxal 5'-phosphate-dependent enzymes
    Mozzarelli, Andrea
    Bettati, Stefano
    CHEMICAL RECORD, 2006, 6 (05): : 275 - 287
  • [4] A pyridoxal 5'-phosphate-dependent Mannich cyclase
    Gao, Jinmin
    Liu, Shaonan
    Zhou, Chen
    Lara, Darwin
    Zou, Yike
    Hai, Yang
    NATURE CATALYSIS, 2023, 6 (06) : 476 - +
  • [5] PYRIDOXAL PHOSPHATE-DEPENDENT ENZYMES
    JOHN, RA
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1995, 1248 (02): : 81 - 96
  • [6] Pyridoxal-5′-phosphate-dependent catalytic antibodies
    Gramatikova, SI
    Christen, P
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2000, 83 (1-3) : 183 - 190
  • [7] Pyridoxal-5′-phosphate-dependent catalytic antibodies
    Gramatikova, S
    Mouratou, B
    Stetefeld, J
    Mehta, PK
    Christen, P
    JOURNAL OF IMMUNOLOGICAL METHODS, 2002, 269 (1-2) : 99 - 110
  • [8] Pyridoxal-5′-phosphate-dependent catalytic antibodies
    Svetlana I. Gramatikova
    Philipp Christen
    Applied Biochemistry and Biotechnology, 2000, 83 : 183 - 193
  • [9] Domain characterization of Bacillus subtilis GabR, a pyridoxal 5′-phosphate-dependent transcriptional regulator
    Okuda, Keita
    Ito, Tomokazu
    Goto, Masaru
    Takenaka, Takashi
    Hemmi, Hisashi
    Yoshimura, Tohru
    JOURNAL OF BIOCHEMISTRY, 2015, 158 (03): : 225 - 234
  • [10] Electroencephalographic and seizure manifestations of pyridoxal 5′-phosphate-dependent epilepsy
    Veerapandiyan, Aravindhan
    Winchester, Sara A.
    Gallentine, William B.
    Smith, Edward C.
    Kansagra, Sujay
    Hyland, Keith
    Mikati, Mohamad A.
    EPILEPSY & BEHAVIOR, 2011, 20 (03) : 494 - 501