Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material

被引:125
作者
Jana, Milan [1 ,2 ]
Saha, Sanjit [1 ,2 ]
Khanra, Partha [3 ]
Samanta, Pranab [1 ]
Koo, Hyeyoung [4 ]
Murmu, Naresh Chandra [1 ]
Kuila, Tapas [1 ]
机构
[1] Cent Mech Engn Res Inst, CSIR, Surface Engn & Tribol Div, Durgapur 713209, India
[2] Acad Sci & Innovat Res AcSIR, New Delhi 110001, India
[3] KIST, Soft Innovat Mat Res Ctr, Jeonbuk 565905, South Korea
[4] KIST, Soft Innovat Mat Res Ctr, Inst Adv Composite Mat, Jeonbuk 565905, South Korea
关键词
ELECTROCHEMICAL PROPERTIES; CARBON NANOTUBES; PERFORMANCE; COMPOSITE; REDUCTION; GRAPHITE; SPECTROSCOPY; FABRICATION; HYDROGEL; NANOWIRE;
D O I
10.1039/c4ta07009g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfanilic acid azocromotrop (SAC) modified reduced graphene oxide (SAC-RGO) was prepared by simple non-covalent functionalization of graphene oxide (GO) followed by post reduction using hydrazine monohydrate. Spectral analysis (Fourier transform infrared, Raman and X-ray photoelectron spectroscopy) revealed that successful modification had occurred of GO with SAC through p-p interaction. The electrical conductivity of SAC-RGO was found to be similar to 551 S m(-1). The capacitive performance of SAC-RGO was recorded using a three electrode set up with 1 (M) aqueous H2SO4 as the electrolyte. The -SO3H functionalities of SAC contributed pseudocapacitance as evidenced from the redox peaks (at similar to 0.43 and 0.27 V) present in the cyclic voltammetric (CV) curves measured for SAC-RGO. The contribution of electrical double layer capacitance was evidenced from the near rectangular shaped CV curves and resulted in a high specific capacitance of 366 F g(-1) at a current density of 1.2 A g(-1) for SAC-RGO electrode. An asymmetric device (SAC-RGO//RGO) was designed with SAC-RGO as the positive electrode and RGO as the negative electrode. The device showed an energy density of similar to 25.8 W h kg(-1) at a power density of similar to 980 W kg(-1). The asymmetric device showed retention in specific capacitance of similar to 72% after 5000 charge-discharge cycles. The Nyquist data of the device was fitted with Z-view and different components (solution resistance, charge-transfer resistance and Warburg elements) were calculated from the fitted curves.
引用
收藏
页码:7323 / 7331
页数:9
相关论文
共 65 条
[1]   Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes [J].
Ai, Wei ;
Zhou, Weiwei ;
Du, Zhuzhu ;
Du, Yaping ;
Zhang, Hua ;
Jia, Xingtao ;
Xie, Linghai ;
Yi, Mingdong ;
Yu, Ting ;
Huang, Wei .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (44) :23439-23446
[2]   Manganosite-microwave exfoliated graphene oxide composites for asymmetric supercapacitor device applications [J].
Antiohos, Dennis ;
Pingmuang, Kanlaya ;
Romano, Mark S. ;
Beirne, Stephen ;
Romeo, Tony ;
Aitchison, Phil ;
Minett, Andrew ;
Wallace, Gordon ;
Phanichphant, Sukon ;
Chen, Jun .
ELECTROCHIMICA ACTA, 2013, 101 :99-108
[3]   Determination of solid phase chemical diffusion coefficient and density of states by electrochemical methods:: Application to iridium oxide-based thin films [J].
Backholm, Jonas ;
Georen, Peter ;
Niklasson, Gunnar A. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (02)
[4]   Non-covalent functionalization of graphene sheets by sulfonated polyaniline [J].
Bai, Hua ;
Xu, Yuxi ;
Zhao, Lu ;
Li, Chun ;
Shi, Gaoquan .
CHEMICAL COMMUNICATIONS, 2009, (13) :1667-1669
[5]   Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid [J].
Bose, Saswata ;
Kuila, Tapas ;
Mishra, Ananta Kumar ;
Kim, Nam Hoon ;
Lee, Joong Hee .
NANOTECHNOLOGY, 2011, 22 (40)
[6]   High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes [J].
Cao, Jianyun ;
Wang, Yaming ;
Zhou, Yu ;
Ouyang, Jia-Hu ;
Jia, Dechang ;
Guo, Lixin .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 689 :201-206
[7]   Using hydroxylamine as a reducer to prepare N-doped graphene hydrogels used in high-performance energy storage [J].
Chang, Yunzhen ;
Han, Gaoyi ;
Yuan, Jinping ;
Fu, Dongying ;
Liu, Feifei ;
Li, Sidian .
JOURNAL OF POWER SOURCES, 2013, 238 :492-500
[8]   An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid [J].
Chen, Dezhi ;
Li, Lidong ;
Guo, Lin .
NANOTECHNOLOGY, 2011, 22 (32)
[9]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[10]   Flexible supercapacitors based on carbon nanomaterials [J].
Chen, Tao ;
Dai, Liming .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10756-10775