Experiential AI: Between Arts and Explainable AI

被引:0
作者
Hemment, Drew [1 ]
Murray-Rust, Dave [2 ]
Belle, Vaishak [3 ]
Aylett, Ruth [4 ]
Vidmar, Matjaz [5 ]
Broz, Frank [6 ]
机构
[1] Univ Edinburgh, Edinburgh Coll Arts, Edinburgh EH39DF, Scotland
[2] Delft Univ Technol, Fac Ind Design Engn, NL-2628 Delft, Netherlands
[3] Univ Edinburgh, Sch Informat, Edinburgh EH89AB, Scotland
[4] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH144AS, Scotland
[5] Univ Edinburgh, Sch Engn, Edinburgh EH93FB, Scotland
[6] Delft Univ Technol, Dept Intelligent Syst, NL-2628 Delft, Netherlands
基金
英国工程与自然科学研究理事会; 英国艺术与人文研究理事会;
关键词
D O I
10.1162/leon_a_02524
中图分类号
J [艺术];
学科分类号
13 ; 1301 ;
摘要
Experiential artificial intelligence (AI) is an approach to the design, use, and evaluation of AI in cultural or other real-world settings that foregrounds human experience and context. It combines arts and engineering to support rich and intuitive modes of model interpretation and interaction, making AI tangible and explicit. The ambition is to enable significant cultural works and make AI systems more understandable to nonexperts, thereby strengthening the basis for responsible deployment. This paper discusses limitations and promising directions in explainable AI, contributions the arts offer to enhance and go beyond explainability and methodology to support, deepen, and extend those contributions.
引用
收藏
页码:298 / 308
页数:10
相关论文
共 35 条
  • [1] Contestable AI by Design: Towards a Framework
    Alfrink, Kars
    Keller, Ianus
    Kortuem, Gerd
    Doorn, Neelke
    [J]. MINDS AND MACHINES, 2023, 33 (04) : 613 - 639
  • [2] Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability
    Ananny, Mike
    Crawford, Kate
    [J]. NEW MEDIA & SOCIETY, 2018, 20 (03) : 973 - 989
  • [3] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2020, 58 : 82 - 115
  • [4] Belle V, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P5116
  • [6] Bory S., 2015, Im@go. Journal of the Social Imaginary, P6
  • [7] Bryan-Kinns N, 2023, Arxiv, DOI [arXiv:2308.05496, 10.48550/ARXIV.2308.05496]
  • [8] Compare Design Council UK, 2005, A study of the design processThe Double Diamond
  • [9] Expanding Explainability: Towards Social Transparency in AI systems
    Ehsan, Upol
    Liao, Q. Vera
    Muller, Michael
    Riedl, Mark O.
    Weisz, Justin D.
    [J]. CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2021,
  • [10] Flyvbjerg B., 2013, Strategies of Qualitative Inquiry, V4th