A note on heat kernel of graphs

被引:0
作者
Yang, Yang [1 ,2 ,3 ]
Ke, Wei [3 ]
Wang, Zhe [3 ]
Qiao, Haiyan [4 ]
机构
[1] Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China
[2] Tianjin Univ Sci & Technol, Coll Artificial Intelligence, Tianjin 300457, Peoples R China
[3] Hebei Hanguang Ind Co Ltd, Key Lab Dual Dielect Power Technol, Handan 056017, Peoples R China
[4] Hebei Univ Engn, Sch Informat & Elect Engn, Handan 056038, Peoples R China
关键词
Heat kernel; Almost equitable partition; Principal submatrix; Laplacian matrix; LAPLACIAN; PAGERANK;
D O I
10.1016/j.heliyon.2024.e32235
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Consider a simple undirected connected graph G, with D(G) and A(G) representing its degree and adjacency matrices, respectively. Furthermore, L(G) = D(G) - A(G) is the Laplacian matrix of G, and H-t = exp (-tL(G)) is the heat kernel (HK) of G, with t > 0 denoting the time variable. For a vertex u is an element of V(G), the uth element of the diagonal of the HK is defined as H-t (u, u) = (exp(-tL(G)))uu = Sigma(infinity)(k=0)((-tL(G))k)(uu) = Sigma(infinity)(t=0) ((-tL(G))(k))(uu)/k!, and HE(G) = Sigma(n)(i=1) e(i)(-t lambda) = Sigma(n)(u=1) H-t(u, u) is the HK trace of G, where lambda(1), lambda(2), center dot center dot center dot , lambda(n) denote the eigenvalues of L(G). This study provides new computational formulas for the HK diagonal entries of graphs using an almost equitable partition and the Schur complement technique. We also provide bounds for the HK trace of the graphs.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Strongly Uncontrollable Network Topologies [J].
Aguilar, Cesar O. .
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (02) :878-886
[2]  
Aguilar CO, 2016, P AMER CONTR CONF, P179, DOI 10.1109/ACC.2016.7524912
[3]   Perfect state transfer in Laplacian quantum walk [J].
Alvir, Rachael ;
Dever, Sophia ;
Lovitz, Benjamin ;
Myer, James ;
Tamon, Christino ;
Xu, Yan ;
Zhan, Hanmeng .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 43 (04) :801-826
[4]   On equitable partition of matrices and its applications [J].
Atik, Fouzul .
LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (11) :2143-2156
[5]   Kernels on Graphs as Proximity Measures [J].
Avrachenkov, Konstantin ;
Chebotarev, Pavel ;
Rubanov, Dmytro .
ALGORITHMS AND MODELS FOR THE WEB GRAPH, WAW 2017, 2017, 10519 :27-41
[6]  
BARLOW M. T., 2017, London Mathematical Society Lecture Note Series, V438, DOI 10.1017/9781107415690
[7]   Laplacian eigenvectors and eigenvalues and almost equitable partitions [J].
Cardoso, Domingos M. ;
Delorme, Charles ;
Rama, Paula .
EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (03) :665-673
[8]  
Caughman J.S., 2006, Eur. J. Comb., V13, P1
[9]   The heat kernel as the pagerank of a graph [J].
Chung, Fan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (50) :19735-19740
[10]   Computing heat kernel pagerank and a local clustering algorithm [J].
Chung, Fan ;
Simpson, Olivia .
EUROPEAN JOURNAL OF COMBINATORICS, 2018, 68 :96-119