Development and validation of the eMCI-CHD tool: A multivariable prediction model for the risk of mild cognitive impairment in patients with coronary heart disease

被引:0
作者
Wang, Qing [1 ,2 ,3 ]
Liu, Yanfei [1 ,2 ,3 ]
Xu, Shihan [1 ,2 ,3 ]
Liu, Fenglan [3 ,4 ]
Huang, Luqi [5 ]
Xu, Fengqin [1 ,2 ,3 ,4 ]
Liu, Yue [2 ,3 ]
机构
[1] China Acad Chinese Med Sci, Xiyuan Hosp, Dept Geriatr 2, Beijing, Peoples R China
[2] China Acad Chinese Med Sci, Xiyuan Hosp, Natl Clin Res Ctr TCM Cardiol, Beijing, Peoples R China
[3] China Acad Chinese Med Sci, Xiyuan Hosp, Key Lab Dis & Syndrome Integrat Prevent & Treatmen, Beijing, Peoples R China
[4] Guangdong Pharmaceut Univ, Sch Clin Med, Guangzhou, Peoples R China
[5] China Acad Chinese Med Sci, China Evidence Based Med Ctr Tradit Chinese Med, Beijing, Peoples R China
关键词
cognitive impairment; coronary heart disease; machine learning; prediction model; risk stratification; DECLINE; STATE;
D O I
10.1111/jebm.12632
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectiveThis study aimed to develop and validate an eMCI-CHD tool based on clinical data to predict mild cognitive impairment (MCI) risk in patients with coronary heart disease (CHD).MethodsThis cross-sectional study prospectively collected data from 400 patients with coronary heart disease (aged 55-90 years, 62% men) from July 2022 to September 2023 and randomized (7:3 ratio) them into training and validation sets. After determining the modeling variables through least absolute shrinkage and selection operator regression analysis, four ML classifiers were developed: logistic regression, extreme gradient boosting (XGBoost), support vector machine, and random forest. The performance of the models was evaluated using area under the ROC curve, accuracy, sensitivity, specificity, and F1 score. Decision curve analysis was used to assess the clinical performance of the established models. The SHapley Additive exPlanations (SHAP) method was applied to determine the significance of the features, the predictive model was visualized with a nomogram, and an online web-based calculator for predicting CHD-MCI risk scores was developed.ResultsOf 400 CHD patients (average age 70.86 +/- 8.74 years), 220 (55%) had MCI. The XGBoost model demonstrated superior performance (AUC: 0.86, accuracy: 78.57%, sensitivity: 0.74, specificity: 0.84, F1: 0.79) and underwent validation. An online tool () with seven predictive variables (APOE gene typing, age, education, TyG index, NT-proBNP, C-reactive protein, and occupation) assessed MCI risk in CHD patients.ConclusionThis study highlights the potential for predicting MCI risk among CHD patients using an ML model-driven nomogram and risk scoring tool based on clinical data.
引用
收藏
页码:535 / 549
页数:15
相关论文
共 57 条
[1]   State of the science on mild cognitive impairment (MCI) [J].
Anderson, Nicole D. .
CNS SPECTRUMS, 2019, 24 (01) :78-87
[2]   Missing Data in Clinical Research: A Tutorial on Multiple Imputation [J].
Austin, Peter C. ;
White, Ian R. ;
Lee, Douglas S. ;
van Buuren, Stef .
CANADIAN JOURNAL OF CARDIOLOGY, 2021, 37 (09) :1322-1331
[3]  
Bekkar Mohamed, 2013, J Inf Eng Appl, V3, P27
[4]   Adult-Life Occupational Exposures: Enriched Environment or a Stressor for the Aging Brain? [J].
Burzynska, Agnieszka Z. ;
Jiao, Yuqin ;
Ganster, Daniel C. .
WORK AGING AND RETIREMENT, 2019, 5 (01) :3-23
[5]  
China Dementia and Cognitive Disorders Guidelines Writing Group Professional Committee of Cognitive Impairment Diseases of Chinese Medical Doctor Association Neurosurgery Branch, 2018, Nat. Med. J. China, V98, P1294, DOI [10.3760/cma.j.issn.0376-2491.2018.17.00, DOI 10.3760/CMA.J.ISSN.0376-2491.2018.17.00]
[6]   International physical activity questionnaire:: 12-country reliability and validity [J].
Craig, CL ;
Marshall, AL ;
Sjöström, M ;
Bauman, AE ;
Booth, ML ;
Ainsworth, BE ;
Pratt, M ;
Ekelund, U ;
Yngve, A ;
Sallis, JF ;
Oja, P .
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2003, 35 (08) :1381-1395
[7]   A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing [J].
Davies, G. ;
Harris, S. E. ;
Reynolds, C. A. ;
Payton, A. ;
Knight, H. M. ;
Liewald, D. C. ;
Lopez, L. M. ;
Luciano, M. ;
Gow, A. J. ;
Corley, J. ;
Henderson, R. ;
Murray, C. ;
Pattie, A. ;
Fox, H. C. ;
Redmond, P. ;
Lutz, M. W. ;
Chiba-Falek, O. ;
Linnertz, C. ;
Saith, S. ;
Haggarty, P. ;
McNeill, G. ;
Ke, X. ;
Ollier, W. ;
Horan, M. ;
Roses, A. D. ;
Ponting, C. P. ;
Porteous, D. J. ;
Tenesa, A. ;
Pickles, A. ;
Starr, J. M. ;
Whalley, L. J. ;
Pedersen, N. L. ;
Pendleton, N. ;
Visscher, P. M. ;
Deary, I. J. .
MOLECULAR PSYCHIATRY, 2014, 19 (01) :76-87
[8]   Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function [J].
Davies, Gail ;
Lam, Max ;
Harris, Sarah E. ;
Trampush, Joey W. ;
Luciano, Michelle ;
Hill, W. David ;
Hagenaars, Saskia P. ;
Ritchie, Stuart J. ;
Marioni, Riccardo E. ;
Fawns-Ritchie, Chloe ;
Liewald, David C. M. ;
Okely, Judith A. ;
Ahola-Olli, Ari V. ;
Barnes, Catriona L. K. ;
Bertram, Lars ;
Bis, Joshua C. ;
Burdick, Katherine E. ;
Christoforou, Andrea ;
DeRosse, Pamela ;
Djurovic, Srdjan ;
Espeseth, Thomas ;
Giakoumaki, Stella ;
Giddaluru, Sudheer ;
Gustavson, Daniel E. ;
Hayward, Caroline ;
Hofer, Edith ;
Ikram, M. Arfan ;
Karlsson, Robert ;
Knowles, Emma ;
Lahti, Jari ;
Leber, Markus ;
Li, Shuo ;
Mather, Karen A. ;
Melle, Ingrid ;
Morris, Derek ;
Oldmeadow, Christopher ;
Palviainen, Teemu ;
Payton, Antony ;
Pazoki, Raha ;
Petrovic, Katja ;
Reynolds, Chandra A. ;
Sargurupremraj, Muralidharan ;
Scholz, Markus ;
Smith, Jennifer A. ;
Smith, Albert V. ;
Terzikhan, Natalie ;
Thalamuthu, Anbupalam ;
Trompet, Stella ;
van der Lee, Sven J. ;
Ware, Erin B. .
NATURE COMMUNICATIONS, 2018, 9
[9]   Coronary heart disease and risk for cognitive impairment or dementia: Systematic review and meta-analysis [J].
Deckers, Kay ;
Schievink, Syenna H. J. ;
Rodriquez, Maria M. F. ;
van Oostenbrugge, Robert J. ;
van Boxtel, Martin P. J. ;
Verhey, Frans R. J. ;
Kohler, Sebastian .
PLOS ONE, 2017, 12 (09)
[10]   N-Terminal pro-Brain Natriuretic Peptide and Associations With Brain Magnetic Resonance Imaging (MRI) Features in Middle Age: The CARDIA Brain MRI Study [J].
Ferguson, Ian T. ;
Elbejjani, Martine ;
Sabayan, Behnam ;
Jacobs, David R., Jr. ;
Meirelles, Osorio ;
Sanchez, Otto A. ;
Tracy, Russell ;
Bryan, Nick ;
Launer, Lenore J. .
FRONTIERS IN NEUROLOGY, 2018, 9