Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge

被引:2
作者
Holste, Gregory [1 ]
Zhou, Yiliang [2 ]
Wang, Song [1 ]
Jaiswal, Ajay [1 ]
Lin, Mingquan [2 ]
Zhuge, Sherry [3 ]
Yang, Yuzhe [4 ]
Kim, Dongkyun [5 ]
Nguyen-Mau, Trong-Hieu [6 ]
Tran, Minh-Triet [6 ]
Jeong, Jaehyup [7 ]
Park, Wongi [8 ]
Ryu, Jongbin [8 ]
Hong, Feng [9 ]
Verma, Arsh [10 ]
Yamagishi, Yosuke [11 ]
Kim, Changhyun [12 ]
Seo, Hyeryeong [13 ]
Kang, Myungjoo [14 ]
Celi, Leo Anthony [15 ,16 ,17 ]
Lu, Zhiyong [18 ]
Summers, Ronald M. [19 ]
Shih, George [20 ]
Wang, Zhangyang [1 ]
Peng, Yifan [2 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Weill Cornell Med, Dept Populat Hlth Sci, New York, NY 10065 USA
[3] Carnegie Mellon Univ, Sch Informat Syst, Pittsburgh, PA 15213 USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[5] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[6] Univ Sci, VNU HCM, Ho Chi Minh City, Vietnam
[7] KT Corp, KT Res & Dev Ctr, Seoul 06763, South Korea
[8] Ajou Univ, Dept Software & Comp Engn, Suwon 16499, South Korea
[9] Shanghai Jiao Tong Univ, Cooperat Medianet Innovat Ctr, Shanghai 200240, Peoples R China
[10] Wadhwani Inst Artificial Intelligence, Mumbai 400079, India
[11] Univ Tokyo, Grad Sch Med, Div Radiol & Biomed Engn, Tokyo 1130033, Japan
[12] SK Telecom, AIX Future R&D Ctr, Biomed AI Team, Seoul 04539, South Korea
[13] Seoul Natl Univ, Interdisciplinary Program AI IPAI, Seoul 02504, South Korea
[14] Seoul Natl Univ, Dept Math Sci, Seoul 02504, South Korea
[15] MIT, Lab Computat Physiol, Cambridge, MA 02139 USA
[16] Beth Israel Deaconess Med Ctr, Div Pulm Crit Care & Sleep Med, Boston, MA 02215 USA
[17] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[18] Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20894 USA
[19] NIH, Ctr Clin, Bethesda, MD 20892 USA
[20] Weill Cornell Med, Dept Radiol, New York, NY 10065 USA
基金
美国国家科学基金会;
关键词
Chest X-ray; Long-tailed learning; Computer-aided diagnosis; DIAGNOSIS;
D O I
10.1016/j.media.2024.103224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many real -world image recognition problems, such as diagnostic medical imaging exams, are "long-tailed"- there are a few common findings followed by many more relatively rare conditions. In chest radiography, diagnosis is both a long-tailed and multi -label problem, as patients often present with multiple findings simultaneously. While researchers have begun to study the problem of long-tailed learning in medical image recognition, few have studied the interaction of label imbalance and label co -occurrence posed by longtailed, multi -label disease classification. To engage with the research community on this emerging topic, we conducted an open challenge, CXR-LT , on long-tailed, multi -label thorax disease classification from chest X-rays (CXRs). We publicly release a large-scale benchmark dataset of over 350,000 CXRs, each labeled with at least one of 26 clinical findings following a long-tailed distribution. We synthesize common themes of top -performing solutions, providing practical recommendations for long-tailed, multi -label medical image classification. Finally, we use these insights to propose a path forward involving vision -language foundation models for few- and zero -shot disease classification.
引用
收藏
页数:12
相关论文
共 83 条
  • [1] Hurdles to Artificial Intelligence Deployment: Noise in Schemas and "Gold" Labels
    Abdalla, Mohamed
    Fine, Benjamin
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2023, 5 (02)
  • [2] Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging
    Azizi, Shekoofeh
    Culp, Laura
    Freyberg, Jan
    Mustafa, Basil
    Baur, Sebastien
    Kornblith, Simon
    Chen, Ting
    Tomasev, Nenad
    Mitrovic, Jovana
    Strachan, Patricia
    Mahdavi, S. Sara
    Wulczyn, Ellery
    Babenko, Boris
    Walker, Megan
    Loh, Aaron
    Chen, Po-Hsuan Cameron
    Liu, Yuan
    Bavishi, Pinal
    McKinney, Scott Mayer
    Winkens, Jim
    Roy, Abhijit Guha
    Beaver, Zach
    Ryan, Fiona
    Krogue, Justin
    Etemadi, Mozziyar
    Telang, Umesh
    Liu, Yun
    Peng, Lily
    Corrado, Greg S.
    Webster, Dale R.
    Fleet, David
    Hinton, Geoffrey
    Houlsby, Neil
    Karthikesalingam, Alan
    Norouzi, Mohammad
    Natarajan, Vivek
    [J]. NATURE BIOMEDICAL ENGINEERING, 2023, 7 (06) : 756 - +
  • [3] Big Self-Supervised Models Advance Medical Image Classification
    Azizi, Shekoofeh
    Mustafa, Basil
    Ryan, Fiona
    Beaver, Zachary
    Freyberg, Jan
    Deaton, Jonathan
    Loh, Aaron
    Karthikesalingam, Alan
    Kornblith, Simon
    Chen, Ting
    Natarajan, Vivek
    Norouzi, Mohammad
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3458 - 3468
  • [4] Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934]
  • [5] HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
    Borgli, Hanna
    Thambawita, Vajira
    Smedsrud, Pia H.
    Hicks, Steven
    Jha, Debesh
    Eskeland, Sigrun L.
    Randel, Kristin Ranheim
    Pogorelov, Konstantin
    Lux, Mathias
    Nguyen, Duc Tien Dang
    Johansen, Dag
    Griwodz, Carsten
    Stensland, Hakon K.
    Garcia-Ceja, Enrique
    Schmidt, Peter T.
    Hammer, Hugo L.
    Riegler, Michael A.
    Halvorsen, Pal
    de Lange, Thomas
    [J]. SCIENTIFIC DATA, 2020, 7 (01)
  • [6] Informatics in Radiology Radiology Gamuts Ontology: Differential Diagnosis for the Semantic Web
    Budovec, Joseph J.
    Lam, Cesar A.
    Kahn, Charles E., Jr.
    [J]. RADIOGRAPHICS, 2014, 34 (01) : 254 - 264
  • [7] PadChest: A large chest x-ray image dataset with multi-label annotated reports
    Bustos, Aurelia
    Pertusa, Antonio
    Salinas, Jose-Maria
    de la Iglesia-Vaya, Maria
    [J]. MEDICAL IMAGE ANALYSIS, 2020, 66
  • [8] Chambon P, 2022, Arxiv, DOI arXiv:2211.12737
  • [9] Label Co-Occurrence Learning With Graph Convolutional Networks for Multi-Label Chest X-Ray Image Classification
    Chen, Bingzhi
    Li, Jinxing
    Lu, Guangming
    Yu, Hongbing
    Zhang, David
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (08) : 2292 - 2302
  • [10] Chen HM, 2019, PR MACH LEARN RES, V102, P109