Relational quantum mechanics, causal composition, and molecular structure

被引:0
|
作者
Esser, Stephen
机构
关键词
Causal composition; Molecular structure; Ontology; Quantum measurement problem; Relational Quantum Mechanics;
D O I
10.1007/s10698-024-09513-1
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
Franklin and Seifert (2021) argue that solving the measurement problem of quantum mechanics (QM) also answers a question central to the philosophy of chemistry: that of how to reconcile QM with the existence of definite molecular structures. This conclusion may appear premature, however, because interactions play a crucial role in shaping molecules, but we generally lack detailed models of how this is accomplished. Given this explanatory gap, simply choosing an interpretation of QM is insufficient, unless the interpretation also has relevant conceptual resources that address how spatially organized molecules are composed. This article seeks to close the gap, using the interpretation provided by relational quantum mechanics (RQM), along with a posited causal ontology. This framework, which entails the co-existence of multiple perspectives on systems within a single world, offers a path toward reconciling the quantum mechanical view of molecules with another conception more congenial to chemistry: that of molecules shaped by patterns of localizing interactions.
引用
收藏
页码:429 / 446
页数:18
相关论文
共 50 条