NONLINEARLY ELASTIC MAPS: ENERGY MINIMIZING CONFIGURATIONS OF MEMBRANES ON PRESCRIBED SURFACES

被引:0
作者
Healey, Timothy J. [1 ]
Nair, Gokul G. [2 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Nonlinear elasticity; polyconvexity; energy minimization; global invertibility;
D O I
10.1090/qam/1698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in 1[83. This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density function is convex in the strain pair comprising the deformation gradient and the local area ratio. If the target surface is a plane, the problem reduces to 2-dimensional, polyconvex nonlinear elasticity addressed by J. M. Ball. On the other hand, the energy density is not rank-one convex for unconstrained deformations into 1[83. We show that the problem admits an energy-minimizing configuration when constrained to lie on the given surface. For a class of Dirichlet problems, we demonstrate that the minimizing deformation is a homeomorphism onto its image on the given surface and establish the weak Eulerian form of the equilibrium equations.
引用
收藏
页数:13
相关论文
共 29 条
[11]  
Dacorogna G., 2007, Direct methods in the calculus of variations, V78
[12]  
Do Carmo M. P., 2016, Differential geometry of curves and surfaces: revised and updated, V2nd
[13]  
Doyle T.C., 1956, Adv. Appl. Mech., V4, P53, DOI DOI 10.1016/S0065-2156(08)70371-5
[14]  
Evans L. C., 2022, Partial differential equations, V19
[15]  
Fourier J.J.F., 2003, SOBOLEV SPACES, V2
[16]   The nonlinear membrane energy:: variational derivation under the constraint "det delu > 0" [J].
Hafsa, Omar Anza ;
Mandallena, Jean-Philippe .
BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (04) :272-291
[17]  
Hajlasz P, 2009, INT MAT SER, V8, P185
[18]   An existence theorem for a class of wrinkling models for highly stretched elastic sheets [J].
Healey, Timothy J. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06)
[19]   Energy Minimizing Configurations for Single-Director Cosserat Shells [J].
Healey, Timothy J. ;
Nair, Gokul G. .
JOURNAL OF ELASTICITY, 2023, 154 (1-4) :569-578
[20]  
Kielhofer H., 2012, BIFURCATION THEORY I, V156