Dynamic Split Computing Framework in Distributed Serverless Edge Clouds

被引:3
作者
Ko, Haneul [1 ]
Jeong, Hyeonjae [2 ]
Jung, Daeyoung [2 ]
Pack, Sangheon [2 ]
机构
[1] Kyung Hee Univ, Dept Elect Engn, Yongin 17104, Gyeonggi, South Korea
[2] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
关键词
Distributed serverless edge cloud; joint optimization; split computing; warm start; RESOURCE-ALLOCATION; INFERENCE;
D O I
10.1109/JIOT.2023.3342438
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distributed serverless edge clouds and split computing are promising technologies to reduce the inference latency of large-scale deep neural networks (DNNs). In this article, we propose a dynamic split computing framework (DSCF) in distributed serverless edge clouds. In DSCF, the edge cloud orchestrator dynamically determines 1) splitting point and 2) warm status maintenance of container instances (i.e., whether or not to maintain each container instance in a warm status). For optimal decisions, we formulate a constrained Markov decision process (CMDP) problem to minimize the inference latency while maintaining the average resource consumption of distributed edge clouds below a certain level. The optimal stochastic policy can be obtained by converting the CMDP model into a linear programming (LP) model. The evaluation results demonstrate that DSCF can achieve less than half the inference latency compared to the local computing scheme while maintaining sufficient low resource consumption of distributed edge clouds.
引用
收藏
页码:14523 / 14531
页数:9
相关论文
共 34 条
[1]  
Amazon Web Serv. Seattle WA USA, AWS Lambda. Documentation
[2]  
[Anonymous], 2022, 3GPP TR 23.700-80 v0.2.0 3rd Generation Partnership Project
[3]  
[Anonymous], 2021, 3GPP TR 22.874 v18.2.0 3rd Generation Partnership Project
[4]   Resource Provisioning and Allocation in Function-as-a-Service Edge-Clouds [J].
Ascigil, Onur ;
Tasiopoulos, Argyrios G. ;
Truong Khoa Phan ;
Sourlas, Vasilis ;
Psaras, Ioannis ;
Pavlou, George .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (04) :2410-2424
[5]   Auto-Split: A General Framework of Collaborative Edge-Cloud AI [J].
Banitalebi-Dehkordi, Amin ;
Vedula, Naveen ;
Pei, Jian ;
Xia, Fei ;
Wang, Lanjun ;
Zhang, Yong .
KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, :2543-2553
[6]   A Decentralized Framework for Serverless Edge Computing in the Internet of Things [J].
Cicconetti, Claudio ;
Conti, Marco ;
Passarella, Andrea .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (02) :2166-2180
[7]   Loop-the-Loops: Fragmented Learning Over Networks for Constrained IoT Devices [J].
Deb, Pallav Kumar ;
Mukherjee, Anandarup ;
Singh, Digvijay ;
Misra, Sudip .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (01) :316-327
[8]   DEFT: Decentralized Multiuser Computation Offloading in a Fog-Enabled IoV Environment [J].
Deb, Pallav Kumar ;
Roy, Chandana ;
Roy, Arijit ;
Misra, Sudip .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) :15978-15987
[9]   JointDNN: An Efficient Training and Inference Engine for Intelligent Mobile Cloud Computing Services [J].
Eshratifar, Amir Erfan ;
Abrishami, Mohammad Saeed ;
Pedram, Massoud .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (02) :565-576
[10]   FaasCache: Keeping Serverless Computing Alive with Greedy-Dual Caching [J].
Fuerst, Alexander ;
Sharma, Prateek .
ASPLOS XXVI: TWENTY-SIXTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, 2021, :386-400