Stereochemical Tailoring of Nickel-based Electrocatalysts for Hydrogen Evolution Reaction

被引:4
|
作者
Papadakis, Michael [1 ]
Mehrez, Jana [1 ]
Wehrung, Iris [1 ]
Delmotte, Lea [1 ]
Giorgi, Michel [2 ]
Hardre, Renaud [1 ]
Orio, Maylis [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, iSm2, Marseille, France
[2] Aix Marseille Univ, CNRS, Spectropole FR1739, Marseille, France
关键词
hydrogen evolution reaction; electrochemistry; electrocatalysis; energy; nickel catalyst; CARBON-DIOXIDE; ACTIVE-SITE; ENERGY; APPROXIMATION; COMPLEXES; REDUCTION; CATALYSIS;
D O I
10.1002/cctc.202400426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The search for alternative non-noble transition metal catalysts able to evolve hydrogen has been the focus of intense research. Molecular complexes bearing redox-active ligands have been reported as efficient electrocatalysts for hydrogen evolution reaction (HER). This study showcases a new family of nickel-thiosemicarbazone complexes displaying significant activity for HER in DMF solvent using trifluoracetic acid as proton source. Following previous works in our group, the ligand was stereochemically tailored, placing methoxy groups at different locations and considering various combinations of positions. Three complexes within the series were shown to outperform the parent catalyst bearing the methoxy group in para position. Overall, the nickel catalyst having the chemical substituent in meta position displays the best catalytic performances while having the lowest overpotential. These results support that ligand stereochemical tailoring in metal complexes improves electrocatalytic HER and suggest that ligand tuning is a promising direction to enhance catalyst performances. A new series of nickel-thiosemicarbazone complexes was synthesized with the methoxy group placed in different positions on the phenyl ring. Their ability to promote electrocatalytic proton reduction into hydrogen was investigated. The meta-substituted complex, NiTSC-(m)-OCH3, outperformed all other tested complexes with a greatly increased TOF of 676.9 s-1 compared to the reference catalyst, NiTSC-(p)-OCH3, with a TOF of 90 s-1. image
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction
    Ming Gong
    Di-Yan Wang
    Chia-Chun Chen
    Bing-Joe Hwang
    Hongjie Dai
    Nano Research, 2016, 9 : 28 - 46
  • [2] A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction
    Gong, Ming
    Wang, Di-Yan
    Chen, Chia-Chun
    Hwang, Bing-Joe
    Dai, Hongjie
    NANO RESEARCH, 2016, 9 (01) : 28 - 46
  • [3] Multi-interface engineering of nickel-based electrocatalysts for alkaline hydrogen evolution reaction
    Zhang, Xiaoxiang
    Guo, Yuxuan
    Wang, Congwei
    ENERGY MATERIALS, 2024, 4 (04):
  • [4] Nickel-Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction
    Tareen, Ayesha Khan
    Priyanga, G. Sudha
    Khan, Karim
    Pervaiz, Erum
    Thomas, Tiju
    Yang, Minghui
    CHEMSUSCHEM, 2019, 12 (17) : 3941 - 3954
  • [5] Nickel-Based Metal-Organic Frameworks as Electrocatalysts for the Oxygen Evolution Reaction (OER)
    Sondermann, Linda
    Jiang, Wulv
    Shviro, Meital
    Spiess, Alex
    Woschko, Dennis
    Rademacher, Lars
    Janiak, Christoph
    MOLECULES, 2022, 27 (04):
  • [6] Nickel-based coatings as highly active electrocatalysts for hydrogen evolution reaction: A review on electroless plating cost-effective technique
    Molaei, Maryam
    Atapour, Masoud
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 40
  • [7] Electropolymerization of Aniline on Nickel-Based Electrocatalysts Substantially Enhances Their Performance for Hydrogen Evolution
    Song, Fuzhan
    Li, Wei
    Han, Guanqun
    Sun, Yujie
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (01): : 3 - 8
  • [8] Nickel Phosphide Electrocatalysts for Hydrogen Evolution Reaction
    Hu, Cun
    Lv, Chao
    Liu, Shuai
    Shi, Yan
    Song, Jiangfeng
    Zhang, Zhi
    Cai, Jinguang
    Watanabe, Akira
    CATALYSTS, 2020, 10 (02)
  • [9] Comparison of four nickel-based electrodes for hydrogen evolution reaction
    Xie, Zhengwei
    He, Ping
    Du, Licheng
    Dong, Faqin
    Dai, Ke
    Zhang, Tinghong
    ELECTROCHIMICA ACTA, 2013, 88 : 390 - 394
  • [10] Iron(II) clathrochelates as electrocatalysts of hydrogen evolution reaction at low pH
    Dolganov, A. V.
    Tarasova, O. V.
    Ivleva, A. Y.
    Chernyaeva, O. Y.
    Grigoryan, K. A.
    Ganz, V. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (44) : 27084 - 27093