Co- and Ni-promoted indium oxide for CO2 hydrogenation to methanol

被引:3
|
作者
Zhu, Yicheng [1 ]
Ma, Hongfang [1 ]
Qian, Weixin [1 ]
Zhang, Haitao [1 ]
Zhang, Haojian [2 ]
Ying, Weiyong [1 ]
机构
[1] East China Univ Sci & Technol, Engn Res Ctr Large Scale Reactor Engn & Technol, Sch Chem Engn, State Key Lab Chem Engn,Minist Educ, Shanghai 200237, Peoples R China
[2] Ningbo Univ Technol, Sch Mat & Chem Engn, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
CATALYST; SITE; ZR;
D O I
10.1039/d4cy00301b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 emission and its conversion to valuable carbon-containing products have attracted increasing attention. In2O3-based catalysts have high selectivity but limited activity for CO2 hydrogenation to methanol. To improve the methanol production of In2O3 and compare the influence of added cobalt or nickel, two series of In2O3-based catalysts with different Co or Ni mole fractions were synthesized by a co-precipitation method and tested at 240-300 degrees C, 3 MPa, and GHSV = 7200 mL (g(cat)(-1) h(-1)) to compare their activity and stability. The catalysts were further investigated by XRD, Ar physical adsorption, ICP, XPS, H-2-TPR, CO2-TPD, HR-TEM and HAADF-STEM. The results show that adding Co can enhance the reducibility of In2O3 but the effect of Ni is in contrast. Abundance of surface oxygen vacancies was not a determining factor for methanol production, and the metal-oxide interface was significant for In2O3 catalytic behavior. Adding Ni can significantly improve the CO2 conversion (17.63% for Ni10In90 and 5.32% for In-100 at 300 degrees C and 3 MPa) but lower the methanol selectivity. Ni-In bimetallic species, which have a negative effect on methanol production, can easily form under a reducing and reaction atmosphere. The Co-promoted samples have higher methanol productivity and stability than Ni-promoted samples, with Co20In80 having the highest Y-MeOH, calculated as 5.36% at 280 degrees C.
引用
收藏
页码:3771 / 3783
页数:13
相关论文
共 50 条
  • [1] Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation
    Martin, Oliver
    Martin, Antonio J.
    Mondelli, Cecilia
    Mitchell, Sharon
    Segawa, Takuya F.
    Hauert, Roland
    Drouilly, Charlotte
    Curulla-Ferre, Daniel
    Perez-Ramirez, Javier
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (21) : 6261 - 6265
  • [2] Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation
    Aziz, M. A. A.
    Jalil, A. A.
    Triwahyono, S.
    Mukti, R. R.
    Taufiq-Yap, Y. H.
    Sazegar, M. R.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 : 359 - 368
  • [3] Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation
    Frei, Matthias S.
    Mondelli, Cecilia
    Garcia-Muelas, Rodrigo
    Kley, Klara S.
    Puertolas, Begona
    Lopez, Nuria
    Safonova, Olga, V
    Stewart, Joseph A.
    Ferre, Daniel Curulla
    Perez-Ramirez, Javier
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [4] Comparison of the Promoted CuZnMxOy (M: Ga, Fe) Catalysts for CO2 Hydrogenation to Methanol
    Cai, Weijie
    Chen, Qing
    Wang, Fagen
    Li, Zhongcheng
    Yu, Hao
    Zhang, Shaoyin
    Cui, Li
    Li, Congming
    CATALYSIS LETTERS, 2019, 149 (09) : 2508 - 2518
  • [5] Nitrogen doping of indium oxide for enhanced photocatalytic reduction of CO2 to methanol
    Yang, Yuxiang
    Pan, Yun-Xiang
    Tu, Xin
    Liu, Chang -jun
    NANO ENERGY, 2022, 101
  • [6] Comparative study of CO2 hydrogenation to methanol on cubic bixbyite-type and rhombohedral corundum-type indium oxide
    Yang, Bin
    Li, Longtai
    Jia, Ziye
    Liu, Xiping
    Zhang, Chunjie
    Guo, Limin
    CHINESE CHEMICAL LETTERS, 2020, 31 (10) : 2627 - 2633
  • [7] Gallium Cluster-Promoted In2O3 Catalyst for CO2 Hydrogenation to Methanol
    Yang, Yuxiang
    Wu, Linlin
    Yao, Bingqing
    Zhang, Lei
    Jung, Munam
    He, Qian
    Yan, Ning
    Liu, Chang-Jun
    ACS CATALYSIS, 2024, 14 (18): : 13958 - 13972
  • [8] Heterogeneously Catalyzed Hydrogenation of Supercritical CO2 to Methanol
    Kommoss, Bjoern
    Klemenz, Sebastian
    Schmitt, Fabian
    Hocke, Elisabeth
    Vogel, Kevin
    Drochner, Alfons
    Albert, Barbara
    Etzold, Bastian
    Vogel, Herbert G.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2017, 40 (10) : 1907 - 1915
  • [9] Optimizing Ni-Fe-Ga alloys into Ni2FeGa for the Hydrogenation of CO2 into Methanol
    Smitshuysen, Thomas E. L.
    Nielsen, Monia R.
    Pruessmann, Tim
    Zimina, Anna
    Sheppard, Thomas L.
    Grunwaldt, Jan-Dierk
    Chorkendorff, Ib
    Damsgaard, Christian D.
    CHEMCATCHEM, 2020, 12 (12) : 3265 - 3273
  • [10] Advances in CO2 Hydrogenation to Methanol by Heterogeneous Catalysis
    Wang, Yanyan
    Liu, Huizhen
    Han, Buxing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (11): : 2393 - 2403