Machine Learning Algorithms for Predicting Wear Rates on the Basis of Friction Noise

被引:2
|
作者
Zhao, Honghao [1 ,2 ]
Yang, Zi [2 ]
Zhang, Bo [3 ]
Xiang, Chong [2 ]
Guo, Fei [2 ]
机构
[1] Harbin Inst Technol Weihai, Dept Mech Engn, Weihai, Peoples R China
[2] Tsinghua Univ, State Key Lab Tribol Adv Equipment, Beijing, Peoples R China
[3] Guangzhou Mech Engn Res Inst Co Ltd, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; prediction; friction sound; wear rate; optimization algorithm; FAULT-DIAGNOSIS; FEATURES; ORIGINS; SURFACE;
D O I
10.1080/10402004.2024.2336005
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Under varying operational conditions, the contact and relative movement of a polymer and metal result in surface wear, accompanied by the emission of noise. The relationship between friction noise and wear is inherently complex and nonlinear. In light of these tribological characteristics, this paper introduces the implementation of a random forest algorithm and generalized regression neural network algorithm to establish a mathematical model for predicting the wear rate based on friction noise. To enhance the accuracy of wear rate regression, this study incorporates L2 norm feature selection and the sparrow search algorithm, which are tailored toward the friction characteristics. These techniques optimize the machine learning-based friction model, ultimately improving the regression accuracy of the wear rate.
引用
收藏
页码:730 / 743
页数:14
相关论文
共 50 条
  • [21] A comparative study of machine learning and deep learning algorithms for predicting student's academic performance
    Bhushan, Megha
    Vyas, Satyam
    Mall, Shrey
    Negi, Arun
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (06) : 2674 - 2683
  • [22] A comparative study of machine learning and deep learning algorithms for predicting student’s academic performance
    Megha Bhushan
    Satyam Vyas
    Shrey Mall
    Arun Negi
    International Journal of System Assurance Engineering and Management, 2023, 14 : 2674 - 2683
  • [23] Triboinformatic modeling of the friction force and friction coefficient in a cam-follower contact using machine learning algorithms
    Bas, Hasan
    Karabacak, Yunus Emre
    TRIBOLOGY INTERNATIONAL, 2023, 181
  • [24] Exploring Machine Learning Algorithms to Find the Best Features for Predicting Modes of Childbirth
    Islam, Muhammad Nazrul
    Mahmud, Tahasin
    Khan, Nafiz Imtiaz
    Mustafina, Sumaiya Nuha
    Islam, A. K. M. Najmul
    IEEE ACCESS, 2021, 9 : 1680 - 1692
  • [25] Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms
    Dinmohammadi, Fateme
    Han, Yuxuan
    Shafiee, Mahmood
    ENERGIES, 2023, 16 (09)
  • [26] Comparative analysis of machine learning algorithms for predicting standard time in a manufacturing environment
    Cakit, Erman
    Dagdeviren, Metin
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2023, 37
  • [27] Comparative analysis of machine learning algorithms for predicting live weight of Hereford cows
    Ruchay, Alexey
    Kober, Vitaly
    Dorofeev, Konstantin
    Kolpakov, Vladimir
    Dzhulamanov, Kinispay
    Kalschikov, Vsevolod
    Guo, Hao
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 195
  • [28] Machine learning algorithms for predicting mortality after coronary artery bypass grafting
    Khalaji, Amirmohammad
    Behnoush, Amir Hossein
    Jameie, Mana
    Sharifi, Ali
    Sheikhy, Ali
    Fallahzadeh, Aida
    Sadeghian, Saeed
    Pashang, Mina
    Bagheri, Jamshid
    Ahmadi Tafti, Seyed Hossein
    Hosseini, Kaveh
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [29] Predicting Colorectal Cancer Using Machine and Deep Learning Algorithms: Challenges and Opportunities
    Alboaneen, Dabiah
    Alqarni, Razan
    Alqahtani, Sheikah
    Alrashidi, Maha
    Alhuda, Rawan
    Alyahyan, Eyman
    Alshammari, Turki
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (02)
  • [30] Predicting world electricity generation by sources using different machine learning algorithms
    Ozdemir, Mehmet Hakan
    Aylak, Batin Latif
    Ince, Murat
    Oral, Okan
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2024, 35 (01) : 98 - 115