New hybrid conjugate gradient method as a convex combination of PRP and RMIL+ methods

被引:0
|
作者
Hadji, Ghania [1 ,2 ]
Laskri, Yamina [3 ]
Bechouat, Tahar [2 ]
Benzine, Rachid [4 ]
机构
[1] Badji Mokhtar Univ, Dept Math, Fac Sci, BP 12, Annaba 23000, Algeria
[2] Mohamed Cherif Messaadia Univ, Fac Sci & Technol, Dept Math & Informat, POB 1553, Souk Ahras 41000, Algeria
[3] Badji Mokhtar Univ, Fac Sci, Dept Math, ESTI, BP 12, Annaba 23000, Algeria
[4] Badji Mokhtar Univ, Fac Sci, Dept Math, Lab LANOS, BP 12, Annaba 23000, Algeria
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2024年 / 69卷 / 02期
关键词
Unconstrained optimization; hybrid conjugate gradient method; line search; descent property; global convergence; GLOBAL CONVERGENCE; DESCENT; COEFFICIENTS; ALGORITHM;
D O I
10.24193/subbmath.2024.2.14
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Conjugate Gradient (CG) method is a powerful iterative approach for solving large-scale minimization problems, characterized by its simplicity, low computation cost and good convergence. In this paper, a new hybrid conjugate gradient HLB method (HLB: Hadji-Laskri-Bechouat) is proposed and analysed for unconstrained optimization. We compute the parameter beta HLB k as a convex combination of the Polak-Ribiere-Polyak ( beta(P RP )(k))and the Mohd Rivaie-Mustafa Mamat and Abdelrhaman Abashar (beta(k) (RMIL +) ) i.e. beta (HLB)(k ) = (1 - theta (k) ) beta(P RP)(k) + theta (k) beta(k) (RMIL +) . By comparing numerically CGHLB with PRP and RMIL+ and by using the Dolan and More CPU performance, we deduce that CGHLB is more efficient.
引用
收藏
页码:457 / 468
页数:12
相关论文
共 50 条
  • [41] A modified PRP conjugate gradient method for unconstrained optimization and nonlinear equations
    Cui, Haijuan
    APPLIED NUMERICAL MATHEMATICS, 2024, 205 : 296 - 307
  • [42] The global convergence of a descent PRP conjugate gradient method
    Li, Min
    Feng, Heying
    Liu, Jianguo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (01): : 59 - 83
  • [43] A DESCENT PRP CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION
    Nosratipour, H.
    Amini, K.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 535 - 548
  • [44] A new family of conjugate gradient methods for unconstrained optimization
    Li, Ming
    Liu, Hongwei
    Liu, Zexian
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 58 (1-2) : 219 - 234
  • [45] Global Convergence of a Modified PRP Conjugate Gradient Method
    Zhang, Yueqin
    Zheng, Hao
    Zhang, Chuanlin
    INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, 2012, 31 : 986 - 995
  • [46] Some new three-term Hestenes-Stiefel conjugate gradient methods with affine combination
    Dong, Xiao-Liang
    Han, De-Ren
    Ghanbari, Reza
    Li, Xiang-Li
    Dai, Zhi-Feng
    OPTIMIZATION, 2017, 66 (05) : 759 - 776
  • [47] A new family of conjugate gradient methods
    Shi, Zhen-Jun
    Guo, Jinhua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (01) : 444 - 457
  • [48] A new hybrid conjugate gradient method for large-scale unconstrained optimization problem with non-convex objective function
    Zahra Khoshgam
    Ali Ashrafi
    Computational and Applied Mathematics, 2019, 38
  • [49] A new hybrid conjugate gradient method for large-scale unconstrained optimization problem with non-convex objective function
    Khoshgam, Zahra
    Ashrafi, Ali
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04)
  • [50] A new family of hybrid conjugate gradient method for unconstrained optimization and its application to regression analysis
    Ben Hanachi, Sabrina
    Sellami, Badreddine
    Belloufi, Mohammed
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (01) : 613 - 627