New hybrid conjugate gradient method as a convex combination of PRP and RMIL+ methods

被引:0
|
作者
Hadji, Ghania [1 ,2 ]
Laskri, Yamina [3 ]
Bechouat, Tahar [2 ]
Benzine, Rachid [4 ]
机构
[1] Badji Mokhtar Univ, Dept Math, Fac Sci, BP 12, Annaba 23000, Algeria
[2] Mohamed Cherif Messaadia Univ, Fac Sci & Technol, Dept Math & Informat, POB 1553, Souk Ahras 41000, Algeria
[3] Badji Mokhtar Univ, Fac Sci, Dept Math, ESTI, BP 12, Annaba 23000, Algeria
[4] Badji Mokhtar Univ, Fac Sci, Dept Math, Lab LANOS, BP 12, Annaba 23000, Algeria
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2024年 / 69卷 / 02期
关键词
Unconstrained optimization; hybrid conjugate gradient method; line search; descent property; global convergence; GLOBAL CONVERGENCE; DESCENT; COEFFICIENTS; ALGORITHM;
D O I
10.24193/subbmath.2024.2.14
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Conjugate Gradient (CG) method is a powerful iterative approach for solving large-scale minimization problems, characterized by its simplicity, low computation cost and good convergence. In this paper, a new hybrid conjugate gradient HLB method (HLB: Hadji-Laskri-Bechouat) is proposed and analysed for unconstrained optimization. We compute the parameter beta HLB k as a convex combination of the Polak-Ribiere-Polyak ( beta(P RP )(k))and the Mohd Rivaie-Mustafa Mamat and Abdelrhaman Abashar (beta(k) (RMIL +) ) i.e. beta (HLB)(k ) = (1 - theta (k) ) beta(P RP)(k) + theta (k) beta(k) (RMIL +) . By comparing numerically CGHLB with PRP and RMIL+ and by using the Dolan and More CPU performance, we deduce that CGHLB is more efficient.
引用
收藏
页码:457 / 468
页数:12
相关论文
共 50 条
  • [31] New Hybrid Conjugate Gradient and Broyden–Fletcher–Goldfarb–Shanno Conjugate Gradient Methods
    Predrag S. Stanimirović
    Branislav Ivanov
    Snežana Djordjević
    Ivona Brajević
    Journal of Optimization Theory and Applications, 2018, 178 : 860 - 884
  • [32] Global convergence of some modified PRP nonlinear conjugate gradient methods
    Zhi-feng Dai
    Bo-Shi Tian
    Optimization Letters, 2011, 5 : 615 - 630
  • [33] An efficient modified PRP-FR hybrid conjugate gradient method for solving unconstrained optimization problems
    Mtagulwa, Peter
    Kaelo, P.
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 111 - 120
  • [34] A PRP-HS Type Hybrid Nonlinear Conjugate Gradient Method for Solving Unconstrained Optimization Problems
    Adeleke, Olawale J.
    Olusanya, Micheal O.
    Osinuga, Idowu A.
    INTELLIGENT SYSTEMS APPLICATIONS IN SOFTWARE ENGINEERING, VOL 1, 2019, 1046 : 58 - 68
  • [35] An efficient hybrid conjugate gradient method for unconstrained optimization
    Dai, YH
    Yuan, Y
    ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 33 - 47
  • [36] An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization
    Y.H. Dai
    Y. Yuan
    Annals of Operations Research, 2001, 103 : 33 - 47
  • [37] New iterative conjugate gradient method for nonlinear unconstrained optimization
    Ben Hanachi, Sabrina
    Sellami, Badreddine
    Belloufi, Mohammed
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (04) : 2315 - 2327
  • [38] Two Modified Hybrid Conjugate Gradient Methods Based on a Hybrid Secant Equation
    Babaie-Kafaki, Saman
    Mahdavi-Amiri, Nezam
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (01) : 32 - 52
  • [39] GLOBAL CONVERGENCE OF HYBRID CONJUGATE GRADIENT METHOD AND ITS APPLICATION TO NONPARAMETRIC ESTIMATION
    Chaib, Yacine
    Mehamdia, Abd Elhamid
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2025, 8 (02): : 296 - 309