New hybrid conjugate gradient method as a convex combination of PRP and RMIL+ methods

被引:0
|
作者
Hadji, Ghania [1 ,2 ]
Laskri, Yamina [3 ]
Bechouat, Tahar [2 ]
Benzine, Rachid [4 ]
机构
[1] Badji Mokhtar Univ, Dept Math, Fac Sci, BP 12, Annaba 23000, Algeria
[2] Mohamed Cherif Messaadia Univ, Fac Sci & Technol, Dept Math & Informat, POB 1553, Souk Ahras 41000, Algeria
[3] Badji Mokhtar Univ, Fac Sci, Dept Math, ESTI, BP 12, Annaba 23000, Algeria
[4] Badji Mokhtar Univ, Fac Sci, Dept Math, Lab LANOS, BP 12, Annaba 23000, Algeria
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2024年 / 69卷 / 02期
关键词
Unconstrained optimization; hybrid conjugate gradient method; line search; descent property; global convergence; GLOBAL CONVERGENCE; DESCENT; COEFFICIENTS; ALGORITHM;
D O I
10.24193/subbmath.2024.2.14
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Conjugate Gradient (CG) method is a powerful iterative approach for solving large-scale minimization problems, characterized by its simplicity, low computation cost and good convergence. In this paper, a new hybrid conjugate gradient HLB method (HLB: Hadji-Laskri-Bechouat) is proposed and analysed for unconstrained optimization. We compute the parameter beta HLB k as a convex combination of the Polak-Ribiere-Polyak ( beta(P RP )(k))and the Mohd Rivaie-Mustafa Mamat and Abdelrhaman Abashar (beta(k) (RMIL +) ) i.e. beta (HLB)(k ) = (1 - theta (k) ) beta(P RP)(k) + theta (k) beta(k) (RMIL +) . By comparing numerically CGHLB with PRP and RMIL+ and by using the Dolan and More CPU performance, we deduce that CGHLB is more efficient.
引用
收藏
页码:457 / 468
页数:12
相关论文
共 50 条
  • [21] Global Convergence Of A New Modified PRP Conjugate Gradient Method
    Yong, Li
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 2287 - 2290
  • [22] A new family of hybrid three-term conjugate gradient methods with applications in image restoration
    Jiang, Xianzhen
    Liao, Wei
    Yin, Jianghua
    Jian, Jinbao
    NUMERICAL ALGORITHMS, 2022, 91 (01) : 161 - 191
  • [23] New spectral PRP conjugate gradient method for unconstrained optimization
    Wan, Zhong
    Yang, ZhanLu
    Wang, YaLin
    APPLIED MATHEMATICS LETTERS, 2011, 24 (01) : 16 - 22
  • [24] New hybrid conjugate gradient projection method for the convex constrained equations
    Sun, Min
    Liu, Jing
    CALCOLO, 2016, 53 (03) : 399 - 411
  • [25] New hybrid conjugate gradient projection method for the convex constrained equations
    Min Sun
    Jing Liu
    Calcolo, 2016, 53 : 399 - 411
  • [26] Two families of hybrid conjugate gradient methods with restart procedures and their applications
    Jiang, Xianzhen
    Yang, Huihui
    Jian, Jinbao
    Wu, Xiaodi
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (05) : 947 - 974
  • [27] A family of hybrid conjugate gradient methods for unconstrained optimization
    Dai, YH
    MATHEMATICS OF COMPUTATION, 2003, 72 (243) : 1317 - 1328
  • [28] A hybrid conjugate gradient method based on a quadratic relaxation of the Dai-Yuan hybrid conjugate gradient parameter
    Babaie-Kafaki, Saman
    OPTIMIZATION, 2013, 62 (07) : 929 - 941
  • [29] Conjugate gradient type methods for the nondifferentiable convex minimization
    Li, Qiong
    OPTIMIZATION LETTERS, 2013, 7 (03) : 533 - 545
  • [30] Solving unconstrained optimization problems via hybrid CD-DY conjugate gradient methods with applications
    Deepho, Jitsupa
    Malik, Maulana
    Argyros, Ioannis K.
    Abubakar, Auwal Bala
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 405