Early prediction of progression to Alzheimer's disease using multi-modality neuroimages by a novel ordinal learning model ADPacer

被引:0
作者
Wang, Lujia [1 ]
Zheng, Zhiyang [1 ]
Su, Yi [2 ]
Chen, Kewei [2 ]
Weidman, David [2 ]
Wu, Teresa [3 ]
Lo, Shihchung [4 ]
Lure, Fleming [4 ]
Li, Jing [1 ]
机构
[1] Georgia Inst Technol, H Hilton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Banner Alzheimers Inst, Tucson, AZ USA
[3] Arizona State Univ, Sch Comp & Augmented Intelligence, Arizona, AZ USA
[4] MS Technol Corp, Rockville, MD USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Machine learning; ordinal learning; Alzheimer's disease; mild cognitive impairment; label ambiguity; MILD COGNITIVE IMPAIRMENT; FLORBETAPIR F 18;
D O I
10.1080/24725579.2023.2249487
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Machine learning has shown great promise for integrating multi-modality neuroimaging datasets to predict the risk of progression/conversion to Alzheimer's Disease (AD) for individuals with Mild Cognitive Impairment (MCI). Most existing work aims to classify MCI patients into converters versus non-converters using a pre-defined timeframe. The limitation is a lack of granularity in differentiating MCI patients who convert at different paces. Progression pace prediction has important clinical values, which allow from more personalized interventional strategies, better preparation of patients and their caregivers, and facilitation of patient selection in clinical trials. We proposed a novel ADPacer model which formulated the pace prediction into an ordinal learning problem with a unique capability of leveraging training samples with label ambiguity to augment the training set. This capability differentiates ADPacer from existing ordinal learning algorithms. We applied ADPacer to MCI patient cohorts from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarker & Lifestyle Flagship Study of Aging (AIBL), and demonstrated the superior performance of ADPacer compared to existing ordinal learning algorithms. We also integrated the SHapley Additive exPlanations (SHAP) method with ADPacer to assess the contributions from different modalities to the model prediction. The findings are consistent with the AD literature.
引用
收藏
页码:167 / 177
页数:11
相关论文
共 50 条
  • [1] Multi-modality MRI for Alzheimer's disease detection using deep learning
    Houria, Latifa
    Belkhamsa, Noureddine
    Cherfa, Assia
    Cherfa, Yazid
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2022, 45 (04) : 1043 - 1053
  • [2] Multi-Modality Sparse Representation for Alzheimer's Disease Classification
    Kwak, Kichang
    Yun, Hyuk Jin
    Park, Gilsoon
    Lee, Jong-Min
    JOURNAL OF ALZHEIMERS DISEASE, 2018, 65 (03) : 807 - 817
  • [3] Multi-modality MRI for Alzheimer’s disease detection using deep learning
    Latifa Houria
    Noureddine Belkhamsa
    Assia Cherfa
    Yazid Cherfa
    Physical and Engineering Sciences in Medicine, 2022, 45 : 1043 - 1053
  • [4] Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data
    Zhou, Tao
    Liu, Mingxia
    Thung, Kim-Han
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) : 2411 - 2422
  • [5] View-aligned hypergraph learning for Alzheimer's disease diagnosis with incomplete multi-modality data
    Liu, Mingxia
    Zhang, Jun
    Yap, Pew-Thian
    Shen, Dinggang
    MEDICAL IMAGE ANALYSIS, 2017, 36 : 123 - 134
  • [6] Domain-specific information preservation for Alzheimer's disease diagnosis with incomplete multi-modality neuroimages
    Xu, Haozhe
    Wang, Jian
    Feng, Qianjin
    Zhang, Yu
    Ning, Zhenyuan
    MEDICAL IMAGE ANALYSIS, 2025, 101
  • [7] Discriminative multi-task feature selection for multi-modality classification of Alzheimer's disease
    Ye, Tingting
    Zu, Chen
    Jie, Biao
    Shen, Dinggang
    Zhang, Daoqiang
    BRAIN IMAGING AND BEHAVIOR, 2016, 10 (03) : 739 - 749
  • [8] Studying the Alzheimer's disease continuum using EEG and fMRI in single-modality and multi-modality settings
    Li, Jing
    Li, Xin
    Chen, Futao
    Li, Weiping
    Chen, Jiu
    Zhang, Bing
    REVIEWS IN THE NEUROSCIENCES, 2024, 35 (04) : 373 - 386
  • [9] MULTI-MODALITY FEATURE SELECTION WITH ADAPTIVE SIMILARITY LEARNING FOR CLASSIFICATION OF ALZHEIMER'S DISEASE
    Zu, Chen
    Wang, Yan
    Zhou, Luping
    Wang, Lei
    Zhang, Daoqiang
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1542 - 1545
  • [10] Predicting Progression of Alzheimer's Disease Using Ordinal Regression
    Doyle, Orla M.
    Westman, Eric
    Marquand, Andre F.
    Mecocci, Patrizia
    Vellas, Bruno
    Tsolaki, Magda
    Kloszewska, Iwona
    Soininen, Hilkka
    Lovestone, Simon
    Williams, Steve C. R.
    Simmons, Andrew
    PLOS ONE, 2014, 9 (08):