An Improved Deep Reinforcement Learning Algorithm for Path Planning in Unmanned Driving

被引:1
|
作者
Yang, Kai [1 ]
Liu, Li [2 ]
机构
[1] Nanjing Normal Univ Special Educ, Sch Math & Informat Sci, Nanjing 210038, Peoples R China
[2] Hainan Univ, Sch Sci, Haikou 570228, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Deep reinforcement learning; path planning; autonomous driving; deep Q-learning network; UAV;
D O I
10.1109/ACCESS.2024.3400159
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the domain of intelligent transportation systems, the advent of autonomous driving technology represents a critical milestone, profoundly shaping the automotive industry's evolutionary path. This technology's core, particularly the algorithms facilitating driverless path planning, has attracted significant scholarly interest. This paper presents an advanced Deep Reinforcement Learning algorithm for Path Planning (DRL-PP), designed to rectify the shortcomings inherent in existing path planning techniques. Considering the complex nature of the environment, the DRL-PP algorithm is meticulously crafted to ascertain optimal actions, thereby effectively reducing the propensity for overfitting. The algorithm harnesses the capabilities of deep reinforcement learning, utilizing neural networks to identify the most advantageous action corresponding to a specific state. It then constructs an optimal action sequence, extending from the vehicle's initial position to its designated target. Additionally, the algorithm enhances the reward function by incorporating data pertinent to the objective. This refinement enables the nuanced differentiation of action values based on dynamically adjusted reward metrics, thereby augmenting the efficiency of the action selection process and yielding improved results in path planning. Empirical results validate the algorithm's proficiency in stabilizing the reward metric while minimizing exploratory steps, consistently surpassing comparative models in path-finding effectiveness.
引用
收藏
页码:67935 / 67944
页数:10
相关论文
共 50 条
  • [21] Global path planning for amphibious unmanned vehicles with multiple constraints via deep reinforcement learning
    Wu, Ting
    Wang, Ronghao
    Zhang, Yan
    Meng, Yuhang
    Xiang, Yuzhu
    Xiang, Zhengrong
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1296 - 1301
  • [22] Autonomous Driving for Natural Paths Using an Improved Deep Reinforcement Learning Algorithm
    Tseng, Kuo-Kun
    Yang, Hong
    Wang, Haoyang
    Yung, Kai Leung
    Lin, Regina Fang-Ying
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (06) : 5118 - 5128
  • [23] Learn to Navigate: Cooperative Path Planning for Unmanned Surface Vehicles Using Deep Reinforcement Learning
    Zhou, Xinyuan
    Wu, Peng
    Zhang, Haifeng
    Guo, Weihong
    Liu, Yuanchang
    IEEE ACCESS, 2019, 7 : 165262 - 165278
  • [24] A deep reinforcement learning approach incorporating genetic algorithm for missile path planning
    Xu, Shuangfei
    Bi, Wenhao
    Zhang, An
    Wang, Yunong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (05) : 1795 - 1814
  • [25] A deep reinforcement learning approach incorporating genetic algorithm for missile path planning
    Shuangfei Xu
    Wenhao Bi
    An Zhang
    Yunong Wang
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1795 - 1814
  • [26] Mobile Robot Path Planning Method Based on Deep Reinforcement Learning Algorithm
    Meng, Haitao
    Zhang, Hengrui
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (15)
  • [27] Path planning for unmanned surface vehicle based on improved Q-Learning algorithm
    Wang, Yuanhui
    Lu, Changzhou
    Wu, Peng
    Zhang, Xiaoyue
    OCEAN ENGINEERING, 2024, 292
  • [28] A Path Planning Strategy for Unmanned Ships Based on Improved A* Algorithm
    Zhou, Peng
    Gao, Diju
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5892 - 5897
  • [29] Global path planning of unmanned vehicle based on improved A* algorithm
    Liang, Hao
    Du, Xiaofang
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 176 - 184
  • [30] A dynamic fusion path planning algorithm for mobile robots incorporating improved IB-RRT∗ and deep reinforcement learning
    Liu A.
    Zhang B.
    Cui Q.
    Zhang D.
    Ni H.
    High Technology Letters, 2023, 29 (04) : 365 - 376