An Improved Deep Reinforcement Learning Algorithm for Path Planning in Unmanned Driving

被引:1
|
作者
Yang, Kai [1 ]
Liu, Li [2 ]
机构
[1] Nanjing Normal Univ Special Educ, Sch Math & Informat Sci, Nanjing 210038, Peoples R China
[2] Hainan Univ, Sch Sci, Haikou 570228, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Deep reinforcement learning; path planning; autonomous driving; deep Q-learning network; UAV;
D O I
10.1109/ACCESS.2024.3400159
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the domain of intelligent transportation systems, the advent of autonomous driving technology represents a critical milestone, profoundly shaping the automotive industry's evolutionary path. This technology's core, particularly the algorithms facilitating driverless path planning, has attracted significant scholarly interest. This paper presents an advanced Deep Reinforcement Learning algorithm for Path Planning (DRL-PP), designed to rectify the shortcomings inherent in existing path planning techniques. Considering the complex nature of the environment, the DRL-PP algorithm is meticulously crafted to ascertain optimal actions, thereby effectively reducing the propensity for overfitting. The algorithm harnesses the capabilities of deep reinforcement learning, utilizing neural networks to identify the most advantageous action corresponding to a specific state. It then constructs an optimal action sequence, extending from the vehicle's initial position to its designated target. Additionally, the algorithm enhances the reward function by incorporating data pertinent to the objective. This refinement enables the nuanced differentiation of action values based on dynamically adjusted reward metrics, thereby augmenting the efficiency of the action selection process and yielding improved results in path planning. Empirical results validate the algorithm's proficiency in stabilizing the reward metric while minimizing exploratory steps, consistently surpassing comparative models in path-finding effectiveness.
引用
收藏
页码:67935 / 67944
页数:10
相关论文
共 50 条
  • [1] Path Planning Technology of Unmanned Vehicle Based on Improved Deep Reinforcement Learning
    Zhang, Kai
    Wang, Guile
    Hu, Jinwen
    Xu, Zhao
    Guo, Chubing
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8392 - 8397
  • [2] AUV path planning based on improved IFDS and deep reinforcement learning
    Fan, Yiqun
    Li, Hongna
    Xie, Jiaqi
    Zhou, Yunfu
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2024, 21 (06):
  • [3] Pursuit Path Planning for Multiple Unmanned Ground Vehicles Based on Deep Reinforcement Learning
    Guo, Hongda
    Xu, Youchun
    Ma, Yulin
    Xu, Shucai
    Li, Zhixiong
    ELECTRONICS, 2023, 12 (23)
  • [4] Unmanned Aerial Vehicle Path Planning Algorithm Based on Deep Reinforcement Learning in Large-Scale and Dynamic Environments
    Xie, Ronglei
    Meng, Zhijun
    Wang, Lifeng
    Li, Haochen
    Wang, Kaipeng
    Wu, Zhe
    IEEE ACCESS, 2021, 9 : 24884 - 24900
  • [5] UCAV Path Planning Algorithm Based on Deep Reinforcement Learning
    Zheng, Kaiyuan
    Gao, Jingpeng
    Shen, Liangxi
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 702 - 714
  • [6] An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning
    Guo, Siyu
    Zhang, Xiuguo
    Zheng, Yisong
    Du, Yiquan
    SENSORS, 2020, 20 (02)
  • [7] A deep reinforcement learning approach incorporating genetic algorithm for missile path planning
    Shuangfei Xu
    Wenhao Bi
    An Zhang
    Yunong Wang
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1795 - 1814
  • [8] A deep reinforcement learning approach incorporating genetic algorithm for missile path planning
    Xu, Shuangfei
    Bi, Wenhao
    Zhang, An
    Wang, Yunong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (05) : 1795 - 1814
  • [9] Mobile Robot Path Planning Method Based on Deep Reinforcement Learning Algorithm
    Meng, Haitao
    Zhang, Hengrui
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (15)
  • [10] Improved Robot Path Planning Method Based on Deep Reinforcement Learning
    Han, Huiyan
    Wang, Jiaqi
    Kuang, Liqun
    Han, Xie
    Xue, Hongxin
    SENSORS, 2023, 23 (12)