Assembly of Differently Sized Supercharged Protein Nanocages into Superlattices for Construction of Binary Nanoparticle-Protein Materials

被引:1
作者
Ruetten, Michael [1 ]
Lang, Laurin [1 ,2 ]
Wagler, Henrike [1 ]
Lach, Marcel [1 ]
Mucke, Niklas [1 ]
Laugks, Ulrike [3 ,4 ,5 ]
Seuring, Carolin [2 ,3 ,4 ,5 ]
Keller, Thomas F. [6 ,7 ]
Stierle, Andreas [6 ,7 ]
Ginn, Helen M. [8 ,9 ]
Beck, Tobias [1 ,2 ]
机构
[1] Univ Hamburg, Inst Phys Chem, Dept Chem, D-20146 Hamburg, Germany
[2] Univ Hamburg, Hamburg Ctr Ultrafast Imaging, D-20146 Hamburg, Germany
[3] Ctr Structureal Syst Biol CSSB, D-22607 Hamburg, Germany
[4] Leibniz Inst Virol, Dept Struct Cell Biol Viruses, D-20251 Hamburg, Germany
[5] Univ Hamburg, Dept Chem, D-20146 Hamburg, Germany
[6] Deutsch Elektronen Synchrotron DESY, Ctr X ray & Nano Sci CXNS, D-22607 Hamburg, Germany
[7] Univ Hamburg, Dept Phys, D-22761 Hamburg, Germany
[8] Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Hamburg, 22607, Germany
[9] Univ Hamburg, Inst Nanostruct & Solid State Phys, Dept Phys, D-22761 Hamburg, Germany
关键词
biohybrid nanomaterials; binary superlattices; protein cages; inorganic nanoparticles; SAXS; single-crystal small-angle X-ray diffraction SC-SAXD; electrostatic assembly; CRYSTALS; METAL; FORM;
D O I
10.1021/acsnano.4c09551
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study focuses on the design and characterization of binary nanoparticle superlattices: Two differently sized, supercharged protein nanocages are used to create a matrix for nanoparticle arrangement. We have previously established the assembly of protein nanocages of the same size. Here, we present another approach for multicomponent biohybrid material synthesis by successfully assembling two differently sized supercharged protein nanocages with different symmetries. Typically, the ordered assembly of objects with nonmatching symmetry is challenging, but our electrostatic-based approach overcomes the symmetry mismatch by exploiting electrostatic interactions between oppositely charged cages. Moreover, our study showcases the use of nanoparticles as a contrast enhancer in an elegant way to gain insights into the structural details of crystalline biohybrid materials. The assembled materials were characterized with various methods, including transmission electron microscopy (TEM) and single-crystal small-angle X-ray diffraction (SC-SAXD). We employed cryo-plasma-focused ion beam milling (cryo-PFIB) to prepare lamellae for the investigation of nanoparticle sublattices via electron cryo-tomography. Importantly, we refined superlattice structure data obtained from single-crystal SAXD experiments, providing conclusive evidence of the final assembly type. Our findings highlight the versatility of protein nanocages for creating distinctive types of binary superlattices. Because the nanoparticles do not influence the type of assembly, protein cage matrices can combine various nanoparticles in the solid state. This study not only contributes to the expanding repertoire of nanoparticle assembly methods but also demonstrates the power of advanced characterization techniques in elucidating the structural intricacies of these biohybrid materials.
引用
收藏
页码:25325 / 25336
页数:12
相关论文
共 59 条
  • [31] Protocol for the use of focused ion-beam milling to prepare crystalline lamellae for microcrystal electron diffraction (MicroED)
    Martynowycz, Michael W.
    Gonen, Tamir
    [J]. STAR PROTOCOLS, 2021, 2 (03):
  • [32] A robust approach for MicroED sample preparation of lipidic cubic phase embedded membrane protein crystals
    Martynowycz, Michael W. W.
    Shiriaeva, Anna
    Clabbers, Max T. B.
    Nicolas, William J. J.
    Weaver, Sara J. J.
    Hattne, Johan
    Gonen, Tamir
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [33] Mastronarde D. N., 2003, MICROSC MICROANAL, V9, P2, DOI [DOI 10.1017/S1431927603445911, 10.1017/s1431927603445911]
  • [34] Automated tilt series alignment and tomographic reconstruction in IMOD
    Mastronarde, David N.
    Held, Susannah R.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2017, 197 (02) : 102 - 113
  • [35] Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates
    Matricardi, Cristiano
    Hanske, Christoph
    Garcia-Pomar, Juan Luis
    Langer, Judith
    Mihi, Agustin
    Liz-Marzan, Luis M.
    [J]. ACS NANO, 2018, 12 (08) : 8531 - 8539
  • [36] A Brief History of Strukturbericht Symbols and Other Crystallographic Classification Schemes
    Mehl, Michael J.
    [J]. XXX IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS, 2019, 1290
  • [37] UCSF ChimeraX: Tools for structure building and analysis
    Meng, Elaine C.
    Goddard, Thomas D.
    Pettersen, Eric F.
    Couch, Greg S.
    Pearson, Zach J.
    Morris, John H.
    Ferrin, Thomas E.
    [J]. PROTEIN SCIENCE, 2023, 32 (11)
  • [38] Crystal structure and bonding in the high-pressure form of fluorite (CaF2)
    Morris, E
    Groy, T
    Leinenweber, K
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2001, 62 (06) : 1117 - 1122
  • [39] Deep strong light-matter coupling in plasmonic nanoparticle crystals
    Mueller, Niclas S.
    Okamura, Yu
    Vieira, Bruno G. M.
    Juergensen, Sabrina
    Lange, Holger
    Barros, Eduardo B.
    Schulz, Florian
    Reich, Stephanie
    [J]. NATURE, 2020, 583 (7818) : 780 - +
  • [40] Owen E.A., 1947, Phil. Mag, V38, P354, DOI [10.1080/14786444708521607, DOI 10.1080/14786444708521607]