Shape Non-rigid Kinematics (SNK): A Zero-Shot Method for Non-Rigid Shape Matching via Unsupervised Functional Map Regularized Reconstruction

被引:0
作者
Attaiki, Souhaib [1 ]
Ovsjanikov, Maks [1 ]
机构
[1] IP Paris, Ecole Polytech, LIX, Paris, France
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
欧洲研究理事会;
关键词
SURFACE; OPTIMIZATION; FRAMEWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present Shape Non-rigid Kinematics (SNK), a novel zero-shot method for non-rigid shape matching that eliminates the need for extensive training or ground truth data. SNK operates on a single pair of shapes, and employs a reconstruction-based strategy using an encoder-decoder architecture, which deforms the source shape to closely match the target shape. During the process, an unsupervised functional map is predicted and converted into a point-to-point map, serving as a supervisory mechanism for the reconstruction. To aid in training, we have designed a new decoder architecture that generates smooth, realistic deformations. SNK demonstrates competitive results on traditional benchmarks, simplifying the shape-matching process without compromising accuracy. Our code can be found online: https://github.com/pvnieo/SNK.
引用
收藏
页数:21
相关论文
共 91 条
  • [31] Eisenberger M, 2020, PROC CVPR IEEE, P12262, DOI 10.1109/CVPR42600.2020.01228
  • [32] Coupled Functional Maps
    Eynard, Davide
    Rodola, Emanuele
    Glashoff, Klaus
    Bronstein, Michael M.
    [J]. PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 399 - 407
  • [33] Elastic Correspondence between Triangle Meshes
    Ezuz, D.
    Heeren, B.
    Azencot, O.
    Rumpf, M.
    Ben-Chen, M.
    [J]. COMPUTER GRAPHICS FORUM, 2019, 38 (02) : 121 - 134
  • [34] Ezuz Danielle, 2017, Computer Graphics Forum, P3
  • [35] Interactive Curve Constrained Functional Maps
    Gehre, A.
    Bronstein, M.
    Kobbelt, L.
    Solomon, J.
    [J]. COMPUTER GRAPHICS FORUM, 2018, 37 (05) : 1 - 12
  • [36] Ginzburg Dvir, 2020, Computer Vision - ECCV 2020 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12350), P36, DOI 10.1007/978-3-030-58558-7_3
  • [37] Ginzburg Dvir, 2019, CYCLIC FUNCTIONAL MA, P8
  • [38] Gropp Amos, 2020, INT C MACHINE LEARNI, P3789
  • [39] 3D-CODED: 3D Correspondences by Deep Deformation
    Groueix, Thibault
    Fisher, Matthew
    Kim, Vladimir G.
    Russell, Bryan C.
    Aubry, Mathieu
    [J]. COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 : 235 - 251
  • [40] Deep Learning for 3D Point Clouds: A Survey
    Guo, Yulan
    Wang, Hanyun
    Hu, Qingyong
    Liu, Hao
    Liu, Li
    Bennamoun, Mohammed
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4338 - 4364