Recent advances in artificial intelligence boosting materials design for electrochemical energy storage

被引:40
作者
Liu, Xinxin [3 ,4 ]
Fan, Kexin [5 ]
Huang, Xinmeng [6 ]
Ge, Jiankai [1 ]
Liu, Yujie [2 ]
Kang, Haisu [1 ]
机构
[1] Univ Illinois, Chem & Biomol Engn, Urbana, IL 61801 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[5] CALTECH, Andrew & Peggy Cherng Dept Med Engn, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[6] Univ Penn, Grad Grp Appl Math & Computat Sci, Philadelphia, PA 19104 USA
关键词
Artificial intelligence; Batteries; Fuel cells; Supercapacitors; Material design; CARBON-BASED SUPERCAPACITORS; DENSITY-FUNCTIONAL THEORY; LITHIUM-ION BATTERIES; OF-THE-ART; FUEL-CELLS; CATHODE MATERIALS; AB-INITIO; REGRESSION; SYSTEM; PREDICTION;
D O I
10.1016/j.cej.2024.151625
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the rapidly evolving landscape of electrochemical energy storage (EES), the advent of artificial intelligence (AI) has emerged as a keystone for innovation in material design, propelling forward the design and discovery of batteries, fuel cells, supercapacitors, and many other functional materials. This review paper elucidates the burgeoning role of AI in materials from foundational machine learning (ML) techniques to its current pivotal role in advancing the frontiers of materials science for energy storage, including enhancing the performance, durability, and safety of battery technologies, fuel cell efficiency and longevity, and the materials fine-tuning in supercapacitors to achieve superior energy storage capabilities. Collectively, we present a comprehensive overview of the recent AI advancements that have significantly accelerated the development of next-generation materials for EES, offering insights into future research trajectories and the potential for AI to unlock new horizons in materials science.
引用
收藏
页数:27
相关论文
共 239 条
[1]   Modeling of capacitance for carbon-based supercapacitors using Super Learner algorithm [J].
Abdi, Jafar ;
Pirhoushyaran, Tahereh ;
Hadavimoghaddam, Fahimeh ;
Madani, Seyed Ali ;
Hemmati-Sarapardeh, Abdolhossein ;
Esmaeili-Faraj, Seyyed Hamid .
JOURNAL OF ENERGY STORAGE, 2023, 66
[2]   Simulation of cyclic voltammetry in structural supercapacitors with pseudocapacitance behavior [J].
Aderyani, S. ;
Flouda, P. ;
Shah, S. A. ;
Green, M. J. ;
Lutkenhaus, J. L. ;
Ardebili, H. .
ELECTROCHIMICA ACTA, 2021, 390
[3]   Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes [J].
Ahmad, Zeeshan ;
Xie, Tian ;
Maheshwari, Chinmay ;
Grossman, Jeffrey C. ;
Viswanathan, Venkatasubramanian .
ACS CENTRAL SCIENCE, 2018, 4 (08) :996-1006
[4]   Efficient hyperparameter-tuned machine learning approach for estimation of supercapacitor performance attributes [J].
Ahmed, Syed Ishtiyaq ;
Radhakrishnan, Sreevatsan ;
Nair, Binoy B. ;
Thiruvengadathan, Rajagopalan .
JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (11)
[5]  
Albawi S, 2017, I C ENG TECHNOL
[6]   Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries [J].
Allam, Omar ;
Cho, Byung Woo ;
Kim, Ki Chul ;
Jang, Seung Soon .
RSC ADVANCES, 2018, 8 (69) :39414-39420
[7]   Generative adversarial networks and diffusion models in material discovery [J].
Alverson, Michael ;
Baird, Sterling G. ;
Murdock, Ryan ;
Ho, Sin-Hang ;
Johnson, Jeremy ;
Sparks, Taylor D. .
DIGITAL DISCOVERY, 2024, 3 (01) :62-80
[8]   A generalized method for high throughput in-situ experiment data analysis: An example of battery materials exploration [J].
Aoun, Bachir ;
Yu, Cun ;
Fan, Longlong ;
Chen, Zonghai ;
Amine, Khalil ;
Ren, Yang .
JOURNAL OF POWER SOURCES, 2015, 279 :246-251
[9]   Deep Reinforcement Learning A brief survey [J].
Arulkumaran, Kai ;
Deisenroth, Marc Peter ;
Brundage, Miles ;
Bharath, Anil Anthony .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (06) :26-38
[10]   High Throughput Methodology for Synthesis, Screening, and Optimization of Solid State Lithium Ion Electrolytes [J].
Beal, Mark S. ;
Hayden, Brian E. ;
Le Gall, Thierry ;
Lee, Christopher E. ;
Lu, Xiaojuan ;
Mirsaneh, Mehdi ;
Mormiche, Claire ;
Pasero, Denis ;
Smith, Duncan C. A. ;
Weld, Andrew ;
Yada, Chihiro ;
Yokoishi, Shoji .
ACS COMBINATORIAL SCIENCE, 2011, 13 (04) :375-381