An Efficient Branch-and-Bound Solver for Hitting Set

被引:0
作者
Blaesius, Thomas [1 ]
Friedrich, Tobias [2 ]
Stangl, David [2 ]
Weyand, Christopher [1 ]
机构
[1] Karlsruhe Inst Technol, Karlsruhe, Germany
[2] Hasso Plattner Inst, Potsdam, Germany
来源
2022 PROCEEDINGS OF THE SYMPOSIUM ON ALGORITHM ENGINEERING AND EXPERIMENTS, ALENEX | 2022年
关键词
APPROXIMATION ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The hitting set problem asks for a collection of sets over a universe U to find a minimum subset of U that intersects each of the given sets. It is NP-hard and equivalent to the problem set cover. We give a branch-and-bound algorithm to solve hitting set. Though it requires exponential time in the worst case, it can solve many practical instances from different domains in reasonable time. Our algorithm outperforms a modern ILP solver, the state-of-the-art for hitting set, by at least an order of magnitude on most instances.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 35 条
[1]   A kernelization algorithm for d-Hitting Set [J].
Abu-Khzam, Faisal N. .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2010, 76 (07) :524-531
[2]   Fast local search for the maximum independent set problem [J].
Andrade, Diogo V. ;
Resende, Mauricio G. C. ;
Werneck, Renato F. .
JOURNAL OF HEURISTICS, 2012, 18 (04) :525-547
[3]  
[Anonymous], GUROBI OPTIMIZER REF, P2021
[4]   Hitting Set Enumeration with Partial Information for Unique Column Combination Discovery [J].
Birnick, Johann ;
Blaesius, Thomas ;
Friedrich, Tobias ;
Naumann, Felix ;
Papenbrock, Thorsten ;
Schirneck, Martin .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (11) :2270-2283
[5]   Understanding the Effectiveness of Data Reduction in Public Transportation Networks [J].
Blaesius, Thomas ;
Fischbeck, Philipp ;
Friedrich, Tobias ;
Schirneck, Martin .
ALGORITHMS AND MODELS FOR THE WEB GRAPH, WAW 2019, 2019, 11631 :87-101
[6]  
Bocker Sebastian, 2007, P 6 AS PAC BIOINF C, DOI [10.1142/97818481610920023, DOI 10.1142/97818481610920023]
[7]   Into the Square On the Complexity of Some Quadratic-time Solvable Problems [J].
Borassi, Michele ;
Crescenzi, Pierluigi ;
Habib, Michel .
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2016, 322 :51-67
[8]  
Brankovic Ljiljana, 2012, Approximation and Online Algorithms. 9th International Workshop, WAOA 2011. Revised Selected Papers, P63, DOI 10.1007/978-3-642-29116-6_6
[9]   Algorithms for the set covering problem [J].
Caprara, A ;
Toth, P ;
Fischetti, M .
ANNALS OF OPERATIONS RESEARCH, 2000, 98 (1-4) :353-371
[10]   Finding exact hitting set solutions for systems biology applications using heterogeneous GPU clusters [J].
Carastan-Santos, Danilo ;
de Camargo, Raphael Y. ;
Martins, David C., Jr. ;
Song, Siang W. ;
Rozante, Luiz C. S. .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2017, 67 :418-429