A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications

被引:23
作者
Doost, Negar Farhang [1 ]
Srivastava, Soumya K. [1 ]
机构
[1] West Virginia Univ, Dept Chem & Biomed Engn, Morgantown, WV 26506 USA
来源
BIOSENSORS-BASEL | 2024年 / 14卷 / 05期
关键词
organ-on-a-chip; disease models; multi-organs-on-a-chip; human-on-a-chip; 3-DIMENSIONAL CELL-CULTURE; IN-VITRO; MICROPHYSIOLOGICAL SYSTEMS; MICROFLUIDIC PLATFORM; STEM-CELLS; POLYETHYLENE-GLYCOL; TISSUE; LIVER; BARRIER; DIFFERENTIATION;
D O I
10.3390/bios14050225
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Organ-on-a-chip (OOC) is an emerging technology that simulates an artificial organ within a microfluidic cell culture chip. Current cell biology research focuses on in vitro cell cultures due to various limitations of in vivo testing. Unfortunately, in-vitro cell culturing fails to provide an accurate microenvironment, and in vivo cell culturing is expensive and has historically been a source of ethical controversy. OOC aims to overcome these shortcomings and provide the best of both in vivo and in vitro cell culture research. The critical component of the OOC design is utilizing microfluidics to ensure a stable concentration gradient, dynamic mechanical stress modeling, and accurate reconstruction of a cellular microenvironment. OOC also has the advantage of complete observation and control of the system, which is impossible to recreate in in-vivo research. Multiple throughputs, channels, membranes, and chambers are constructed in a polydimethylsiloxane (PDMS) array to simulate various organs on a chip. Various experiments can be performed utilizing OOC technology, including drug delivery research and toxicology. Current technological expansions involve multiple organ microenvironments on a single chip, allowing for studying inter-tissue interactions. Other developments in the OOC technology include finding a more suitable material as a replacement for PDMS and minimizing artefactual error and non-translatable differences.
引用
收藏
页数:27
相关论文
共 172 条
[1]   Pancreas-on-a-Chip Technology for Transplantation Applications [J].
Abadpour, Shadab ;
Aizenshtadt, Aleksandra ;
Olsen, Petter Angell ;
Shoji, Kayoko ;
Wilson, Steven Ray ;
Krauss, Stefan ;
Scholz, Hanne .
CURRENT DIABETES REPORTS, 2020, 20 (12)
[2]   Testis on a chip-a microfluidic three-dimensional culture system for the development of spermatogenesis in-vitro [J].
AbuMadighem, Ali ;
Shuchat, Sholom ;
Lunenfeld, Eitan ;
Yossifon, Gilad ;
Huleihel, Mahmoud .
BIOFABRICATION, 2022, 14 (03)
[3]  
Adekanmbi E.O., 2019, Bio-Inspired Technology Working Title, DOI [10.5772/intechopen.82637, DOI 10.5772/INTECHOPEN.82637]
[4]   Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury [J].
Agrawal, Gaurav ;
Aung, Aereas ;
Varghese, Shyni .
LAB ON A CHIP, 2017, 17 (20) :3447-3461
[5]  
Ahn Jungho, 2017, Bioengineering-Basel, V4, P64, DOI 10.3390/bioengineering4030064
[6]   Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms [J].
Ahn, Song Ih ;
Sei, Yoshitaka J. ;
Park, Hyun-Ji ;
Kim, Jinhwan ;
Ryu, Yujung ;
Choi, Jeongmoon J. ;
Sung, Hak-Joon ;
MacDonald, Tobey J. ;
Levey, Allan, I ;
Kim, YongTae .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion [J].
Atac, Beren ;
Wagner, Ilka ;
Horland, Reyk ;
Lauster, Roland ;
Marx, Uwe ;
Tonevitsky, Alexander G. ;
Azar, Reza P. ;
Lindner, Gerd .
LAB ON A CHIP, 2013, 13 (18) :3555-3561
[8]   3D-Printed Microfluidics [J].
Au, Anthony K. ;
Huynh, Wilson ;
Horowitz, Lisa F. ;
Folch, Albert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :3862-3881
[9]   A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction [J].
Bakooshli, Mohsen Afshar ;
Lippmann, Ethan S. ;
Mulcahy, Ben ;
Iyer, Nisha ;
Nguyen, Christine T. ;
Tung, Kayee ;
Stewart, Bryan A. ;
van den Dorpel, Hubrecht ;
Fuehrmann, Tobias ;
Shoichet, Molly ;
Bigot, Anne ;
Pegoraro, Elena ;
Ahn, Henry ;
Ginsberg, Howard ;
Zhen, Mei ;
Ashton, Randolph Scott ;
Gilbert, Penney M. .
ELIFE, 2019, 8
[10]   The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells [J].
Basford, C. L. ;
Prentice, K. J. ;
Hardy, A. B. ;
Sarangi, F. ;
Micallef, S. J. ;
Li, X. ;
Guo, Q. ;
Elefanty, A. G. ;
Stanley, E. G. ;
Keller, G. ;
Allister, E. M. ;
Nostro, M. C. ;
Wheeler, M. B. .
DIABETOLOGIA, 2012, 55 (02) :358-371