Multi-Scale Enhanced Depth Knowledge Distillation for Monocular 3D Object Detection with SEFormer

被引:0
|
作者
Zhang, Han [1 ]
Li, Jun [1 ]
Tang, Rui [2 ]
Shi, Zhiping [1 ]
Bu, Aojie [1 ]
机构
[1] Capital Normal Univ, Informat Engn Coll, Beijing, Peoples R China
[2] ZongMu Technol, Comp Vis Percept Dept, Shanghai, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS | 2024年
关键词
3D object detection; Knowledge distillation; Autonomous driving;
D O I
10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of the Internet of Things, where efficient and accurate perception is crucial. Monocular 3D detection has gained attention due to its cost-effectiveness. This paper introduces an efficient method for monocular 3D object detection, termed Multi-Scale Enhanced Depth Knowledge Distillation (MDKD). Our approach simplifies the teacher network, eliminating the need for extra modal data input while improving the student network's performance. Additionally, we present a Multi-Scale Depth Enhancement (MDE) module and a novel lightweight Squeeze-Excitation Former (SEFormer). Our method addresses the growing demand for precise object detection within IoT environments. Extensive experiments on the KITTI dataset validate our method's effectiveness.
引用
收藏
页码:38 / 43
页数:6
相关论文
共 50 条
  • [31] MonoFENet: Monocular 3D Object Detection With Feature Enhancement Networks
    Bao, Wentao
    Xu, Bin
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 2753 - 2765
  • [32] MonoEF: Extrinsic Parameter Free Monocular 3D Object Detection
    Zhou, Yunsong
    He, Yuan
    Zhu, Hongzi
    Wang, Cheng
    Li, Hongyang
    Jiang, Qinhong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10114 - 10128
  • [33] An improved multi-scale and knowledge distillation method for efficient pedestrian detection in dense scenes
    Xu, Yanxiang
    Wen, Mi
    He, Wei
    Wang, Hongwei
    Xue, Yunsheng
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (04)
  • [34] MMDistill: Multi-Modal BEV Distillation Framework for Multi-View 3D Object Detection
    Jiao, Tianzhe
    Chen, Yuming
    Zhang, Zhe
    Guo, Chaopeng
    Song, Jie
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (03): : 4307 - 4325
  • [35] Multi-scale Feature Extraction and Fusion for Online Knowledge Distillation
    Zou, Panpan
    Teng, Yinglei
    Niu, Tao
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 126 - 138
  • [36] SSD-MonoDETR: Supervised Scale-Aware Deformable Transformer for Monocular 3D Object Detection
    He, Xuan
    Yang, Fan
    Yang, Kailun
    Lin, Jiacheng
    Fu, Haolong
    Wang, Meng
    Yuan, Jin
    Li, Zhiyong
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 555 - 567
  • [37] Voxel-FPN: Multi-Scale Voxel Feature Aggregation for 3D Object Detection from LIDAR Point Clouds
    Kuang, Hongwu
    Wang, Bei
    An, Jianping
    Zhang, Ming
    Zhang, Zehan
    SENSORS, 2020, 20 (03)
  • [38] 3D pedestrian detection based on hybrid multi-scale cascade fusion network
    Chen, Yang
    Mu, Yan
    Ni, Rongrong
    Yang, Biao
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [39] Semantic Shape and Trajectory Reconstruction for Monocular Cooperative 3D Object Detection
    Cserni, Marton
    Rovid, Andras
    IEEE ACCESS, 2024, 12 : 167153 - 167167
  • [40] GPro3D: Deriving 3D BBox from ground plane in monocular 3D object detection
    Yang, Fan
    Xu, Xinhao
    Chen, Hui
    Guo, Yuchen
    He, Yuwei
    Ni, Kai
    Ding, Guiguang
    NEUROCOMPUTING, 2023, 562