Extracting iceberg freeboard using shadow length in high-resolution optical images
被引:1
|
作者:
Suo, Ziyi
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
Nanjing Univ, Collaborat Innovat Ctr South China Sea Studies, Nanjing, Peoples R ChinaNanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
Suo, Ziyi
[1
,2
]
Lu, Yingcheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R ChinaNanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
Lu, Yingcheng
[1
]
Liu, Jianqiang
论文数: 0引用数: 0
h-index: 0
机构:
Minist Nat Resources, Natl Satellite Ocean Applicat Serv, Key Lab Space Ocean Remote Sensing & Applicat, Beijing, Peoples R ChinaNanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
Liu, Jianqiang
[3
]
Ding, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Minist Nat Resources, Natl Satellite Ocean Applicat Serv, Key Lab Space Ocean Remote Sensing & Applicat, Beijing, Peoples R ChinaNanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
Ding, Jing
[3
]
Wang, Qing
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R ChinaNanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
Wang, Qing
[1
]
Li, Ling
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R ChinaNanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
Li, Ling
[1
]
Ju, Weimin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
Nanjing Univ, Collaborat Innovat Ctr South China Sea Studies, Nanjing, Peoples R ChinaNanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
Ju, Weimin
[1
,2
]
Li, Manchun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Collaborat Innovat Ctr South China Sea Studies, Nanjing, Peoples R China
Nanjing Univ, Sch Geog & Ocean Sci, Nanjing, Peoples R ChinaNanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
Li, Manchun
[2
,4
]
机构:
[1] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr South China Sea Studies, Nanjing, Peoples R China
[3] Minist Nat Resources, Natl Satellite Ocean Applicat Serv, Key Lab Space Ocean Remote Sensing & Applicat, Beijing, Peoples R China
[4] Nanjing Univ, Sch Geog & Ocean Sci, Nanjing, Peoples R China
Icebergs are big chunks of ice floating on the ocean surface, and melting of icebergs contributes for the major part of freshwater flux into ocean. Dynamic monitoring of the icebergs in Antarctica and accurate estimation of their volume are important for predicting the trend of freshwater budget of the Southern Ocean. The iceberg freeboard is a key parameter for measuring the thickness and volume of an iceberg and is defined as the difference between the elevation of iceberg surface and sea level. So far, freeboards of icebergs have been successfully extracted using InSAR DEM, and the laser and radar altimeter. However, uncertainties exist in these results mainly caused by missed detection of small icebergs due to the spatially sparse and temporally incomplete data coverage. In addition to the above techniques, optical images can also be used to extract the iceberg freeboard based on its geometric relationship with shadow length, which can effectively compensate for the above shortcomings. Although the feasibility has been preliminarily presented, the precision and extensive application of shadow-height method deserves further research, such as estimating the basal melting of icebergs. In this work, we tested an optical image-based freeboard extraction method over icebergs in Prydz Bay, Antarctica. A normalized shadow pixel index (NSPI) is designed to identify iceberg shadows with different shapes in HY-1C/D CZI and Sentinel-2 MSI optical images. The iceberg freeboard can be determined with an acceptable precision (2 m) in optical images compared with laser altimeter (i.e. ICESat-2) measurements. Moreover, basal melting of icebergs has been assessed according to the variation of freeboard using repeated optical observations. The results indicate that icebergs in the study area were with a mean freeboard of about 56 m in early December 2022, and experienced a decrease in freeboard of 1.9 m within two months, in correspondence with the Antarctic seasonal trend. The methodological framework, therefore, turns out to be a reliable complementary approach to studying the iceberg freeboard in polar regions.