Electrochemical Surface Plasmon Resonance Sensing using a van der Waals Heterostructure

被引:1
作者
Jungnickel, Robert [1 ,2 ]
Balasubramanian, Kannan [1 ,2 ]
机构
[1] Humboldt Univ, Sch Analyt Sci Adlershof SALSA, Dept Chem, D-10117 Berlin, Germany
[2] Humboldt Univ, IRIS Adlershof, D-10117 Berlin, Germany
来源
ADVANCED SENSOR RESEARCH | 2024年 / 3卷 / 09期
关键词
2D materials; diffusion; electrochemistry; graphene; hexagonal boron nitride; sensor; SPR; MONOLAYER GRAPHENE; ELECTRON-TRANSFER; BORON-NITRIDE; INTERFACES; SPR; SPECTROSCOPY; PERFORMANCE; KINETICS; BLUE;
D O I
10.1002/adsr.202400028
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Coupling surface plasmon resonance (SPR) sensing with electrochemistry (EC) is a promising analytical strategy to obtain information about interfacial phenomena in heterogeneous reactions. Typical EC-SPR sensors utilize a metal film both as the plasmonic material and as the working electrode. In this configuration, the eigenmodulation of the plasmonic properties of the metal film under applied potential results in a background signal, which hampers the unambiguous interpretation of the sensor response due to redox reactions. Here, a new strategy is presented to overcome this disadvantage by using a van der Waals heterostructure (vdW-HS) as the working electrode. The vdW-HS comprises of a graphene / hexagonal boron nitride (hBN) stack on a gold film of a standard SPR sensor. It is shown here that the background signal is completely suppressed enabling the unambiguous analysis of SPR sensor response due to electrochemical reactions. It is further observed that the potential dependent plasmonic signals are not just a reproduction of the electrochemical current and subtle differences can be traced back to the diffusive nature of the redox active species. Finally, it is demonstrated that EC-SPR can be used as a complementary method to distinguish if the electrochemical response is mainly surface-bound or due to diffusion. Here a new strategy is presented to realize an electrochemical surface plasmon resonance (EC-SPR) sensor using a graphene/hexagonal boron nitride heterostructure on gold. With this sensor, it is shown that the potential-dependent modulation of the EC-SPR signal on gold can be completely suppressed, enabling unambiguous monitoring of redox reactions at the graphene-liquid-interface. image
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Probing the ultimate plasmon confinement limits with a van der Waals heterostructure
    Alcaraz Iranzo, David
    Nanot, Sebastien
    Dias, Eduardo J. C.
    Epstein, Itai
    Peng, Cheng
    Efetov, Dmitri K.
    Lundeberg, Mark B.
    Parret, Romain
    Osmond, Johann
    Hong, Jin-Yong
    Kong, Jing
    Englund, Dirk R.
    Peres, Nuno M. R.
    Koppens, Frank H. L.
    SCIENCE, 2018, 360 (6386) : 291 - 295
  • [2] Organic Gas Sensing Performance of the Borophene van der Waals Heterostructure
    Shen, Jiale
    Yang, Zhi
    Wang, Yatong
    Xu, Li-Chun
    Liu, Ruiping
    Liu, Xuguang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (01) : 427 - 435
  • [3] Electrochemistry at the Edge of a van der Waals Heterostructure
    Plackic, Aleksandra
    Neubert, Tilmann J.
    Patel, Kishan
    Kuhl, Michel
    Watanabe, Kenji
    Taniguchi, Takashi
    Zurutuza, Amaia
    Sordan, Roman
    Balasubramanian, Kannan
    SMALL, 2024, 20 (21)
  • [4] Enhanced refractive index sensing using a surface plasmon resonance sensor with heterostructure
    Kumar, Rajeev
    Agarwal, Sajal
    Pal, Sarika
    Prajapati, Yogendra Kumar
    Saini, J. P.
    MICRO AND NANOSTRUCTURES, 2023, 183
  • [5] Inorganic gas sensing performance of χ3-borophene and the van der Waals heterostructure
    Huo, Yiqi
    Liu, Ruiping
    Sun, Qing
    Yang, Zhi
    Xu, Li-Chun
    Liu, Xuguang
    APPLIED SURFACE SCIENCE, 2022, 581
  • [6] Franckeite as a naturally occurring van der Waals heterostructure
    Molina-Mendoza, Aday J.
    Giovanelli, Emerson
    Paz, Wendel S.
    Angel Nino, Miguel
    Island, Joshua O.
    Evangeli, Charalambos
    Aballe, Lucia
    Foerster, Michael
    van der Zant, Herre S. J.
    Rubio-Bollinger, Gabino
    Agrait, Nicolas
    Palacios, J. J.
    Perez, Emilio M.
    Castellanos-Gomez, Andres
    NATURE COMMUNICATIONS, 2017, 8
  • [7] Van der Waals Heterostructure Based Field Effect Transistor Application
    Li, Jingyu
    Chen, Xiaozhang
    Zhang, David Wei
    Zhou, Peng
    CRYSTALS, 2018, 8 (01)
  • [8] Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure
    Ma, Qiong
    Andersen, Trond I.
    Nair, Nityan L.
    Gabor, Nathaniel M.
    Massicotte, Mathieu
    Lui, Chun Hung
    Young, Andrea F.
    Fang, Wenjing
    Watanabe, Kenji
    Taniguchi, Takashi
    Kong, Jing
    Gedik, Nuh
    Koppens, Frank H. L.
    Jarillo-Herrero, Pablo
    NATURE PHYSICS, 2016, 12 (05) : 455 - +
  • [9] Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure
    Hunt, B.
    Sanchez-Yamagishi, J. D.
    Young, A. F.
    Yankowitz, M.
    LeRoy, B. J.
    Watanabe, K.
    Taniguchi, T.
    Moon, P.
    Koshino, M.
    Jarillo-Herrero, P.
    Ashoori, R. C.
    SCIENCE, 2013, 340 (6139) : 1427 - 1430
  • [10] Two-dimensional van der Waals heterostructure for ultra-sensitive nanoelectromechanical piezoresistive pressure sensing
    Zeng, Haiou
    Song, Ruiyang
    Tong, Junhe
    Zhang, Shengping
    Han, Feng
    Han, Xiangguang
    Wang, Luda
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 372