A Magnetotelluric Data Denoising Method Based on Lightweight Ensemble Learning

被引:0
|
作者
Ji, Mingjie [1 ]
Chen, Huang [2 ,3 ]
Zhang, Chao [2 ,3 ]
Yu, Nian [1 ,3 ]
Kong, Wenxin [2 ,3 ]
机构
[1] Chongqing Univ, Sch Elect Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Sch Resources & Safety Engn, Chongqing 400044, Peoples R China
[3] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Noise; Noise reduction; Fitting; Ensemble learning; Deep learning; Training; Convolutional neural networks; Adaptive threshold; deep learning; density-based spatial clustering of applications with noise (DBSCAN); ensemble learning; magnetotelluric (MT) data denoising; K-SVD;
D O I
10.1109/TGRS.2024.3401194
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Traditional magnetotelluric (MT) denoising methods often encounter limitations in various scenarios. However, with its robust adaptability and high precision, deep learning has exhibited outstanding denoising performance when applied to MT exploration time series data. Recent researches have mainly focused on developing advanced single deep learning models to enhance MT denoising effectiveness. This article introduces a lightweight ensemble learning approach for MT denoising, aiming to enhance denoising performance via a single deep convolutional network. Our ensemble learning strategy uses a sliding window technique to generate overlapping MT time series segments, thereby providing multiple inputs for a specialized noise-fitting network. This variety of inputs enables a comprehensive understanding of MT data, thereby increasing the probability of identifying complex noise patterns. Then, the outputs from these inputs are integrated using a method that combines shifting averages and adaptive thresholding to obtain more accurate fitted noise contours. Furthermore, we apply a three-layer density-based spatial clustering of applications with noise (DBSCAN) methodology to identify the real noise contours among the fitted noise contours and then to get the residual signal by subtracting those real noise contours. Subsequently, the residual signal is further processed by the pretrained denoising network to eliminate noise artifacts. The efficacy of our approach is validated through experiments conducted with both synthetic and field data, demonstrating substantial improvements in denoising, particularly within mid- and low-frequency ranges. Several interrelated parameters exhibit notable improvements, including apparent resistivity and phase curves, time-frequency domain curves, and so on.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Ensemble Learning of Lightweight Deep Learning Models Using Knowledge Distillation for Image Classification
    Kang, Jaeyong
    Gwak, Jeonghwan
    MATHEMATICS, 2020, 8 (10)
  • [22] Method for Incomplete and Imbalanced Data Based on Multivariate Imputation by Chained Equations and Ensemble Learning
    Li, Jiaxi
    Wang, Zhelong
    Wu, Lina
    Qiu, Sen
    Zhao, Hongyu
    Lin, Fang
    Zhang, Ke
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 3102 - 3113
  • [23] Ensemble Deep Learning Classification Method Based on Generative Adversarial Networks
    Shen, Haoyuan
    Lin, Chenglong
    Ma, Yizhong
    Xie, En
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 46 - 53
  • [24] An ensemble deep learning method as data fusion system for remote sensing multisensor classification
    Bigdeli, Behnaz
    Pahlavani, Parham
    Amirkolaee, Hamed Amini
    APPLIED SOFT COMPUTING, 2021, 110
  • [25] DCNNs-Based Denoising With a Novel Data Generation for Multidimensional Geological Structures Learning
    Sang, Wenjing
    Yuan, Sanyi
    Yong, Xueshan
    Jiao, Xinqi
    Wang, Shangxu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (10) : 1861 - 1865
  • [26] IncepX-Ensemble: Performance Enhancement Based on Data Augmentation and Hybrid Learning for Recycling Transparent PET Bottles
    Chatterjee, Subhajit
    Hazra, Debapriya
    Byun, Yung-Cheol
    IEEE ACCESS, 2022, 10 : 52280 - 52293
  • [27] Enhancing Student Academic Success Prediction Through Ensemble Learning and Image-Based Behavioral Data Transformation
    Zhao, Shuai
    Zhou, Dongbo
    Wang, Huan
    Chen, Di
    Yu, Lin
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [28] CLUSTERING-BASED SUBSET ENSEMBLE LEARNING METHOD FOR IMBALANCED DATA
    Hu, Xiao-Sheng
    Zhang, Run-Jing
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 35 - 39
  • [29] Rapid Response DAS Denoising Method Based on Deep Learning
    Wang, Maoning
    Deng, Lin
    Zhong, Yuzhong
    Zhang, Jianwei
    Peng, Fei
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (08) : 2583 - 2593
  • [30] A novel hybrid ensemble model based on tree-based method and deep learning method for default prediction
    He, Hongliang
    Fan, Yanli
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 176