SINGULAR REDUCTION OF CONTACT HAMILTONIAN SYSTEMS

被引:0
|
作者
Xia, Qianqian [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, CICAEET, Nanjing 210044, Peoples R China
关键词
contact Hamiltonian system; proper action; reduction; subcartesian space; GEOMETRY;
D O I
10.1016/S0034-4877(24)00029-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study singular reduction of contact Hamiltonian systems acted upon properly by a Lie group. The tools we use are the category of differential space.
引用
收藏
页码:241 / 260
页数:20
相关论文
共 50 条
  • [41] On Lagrangian and Hamiltonian systems with homogeneous trajectories
    Toth, Gabor Zsolt
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
  • [42] Hamiltonian systems on almost cosymplectic manifolds
    Berceanu, Stefan
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 183
  • [43] Group Theory in Finite Hamiltonian Systems
    Bernardo Wolf, Kurt
    SYMMETRIES IN SCIENCE XV, 2012, 380
  • [44] Comments on HKT supersymmetric sigma models and their Hamiltonian reduction
    Fedoruk, Sergey
    Smilga, Andrei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (21)
  • [45] Singular reduction of Nambu-Poisson manifolds
    Das, Apurba
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (09)
  • [46] Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior
    Liu, Qihuai
    Torres, Pedro J.
    Wang, Chao
    ANNALS OF PHYSICS, 2018, 395 : 26 - 44
  • [47] Infinitesimal Poisson algebras and linearization of Hamiltonian systems
    Ruiz-Pantaleon, J. C.
    Garcia-Beltran, D.
    Vorobiev, Yu.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 58 (04) : 415 - 431
  • [48] Hamiltonian structure of rational isomonodromic deformation systems
    Bertola, M.
    Harnad, J.
    Hurtubise, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (08)
  • [49] Bi-Hamiltonian representation of Stackel systems
    Blaszak, Maciej
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [50] Λ-symmetries of dynamical systems, Hamiltonian and Lagrangian equations
    Cicogna, Giampaolo
    GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, : 47 - 60