SINGULAR REDUCTION OF CONTACT HAMILTONIAN SYSTEMS

被引:0
|
作者
Xia, Qianqian [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, CICAEET, Nanjing 210044, Peoples R China
关键词
contact Hamiltonian system; proper action; reduction; subcartesian space; GEOMETRY;
D O I
10.1016/S0034-4877(24)00029-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study singular reduction of contact Hamiltonian systems acted upon properly by a Lie group. The tools we use are the category of differential space.
引用
收藏
页码:241 / 260
页数:20
相关论文
共 50 条
  • [31] Partial Differential Hamiltonian Systems
    Vitagliano, Luca
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (05): : 1164 - 1200
  • [32] Implicit Hamiltonian systems with symmetry
    van der Schaft, AJ
    REPORTS ON MATHEMATICAL PHYSICS, 1998, 41 (02) : 203 - 221
  • [33] Singular Reduction of Generalized Complex Manifolds
    Goldberg, Timothy E.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [34] Integrability and reduction of Hamiltonian actions on Dirac manifolds
    Brahic, Olivier
    Fernandes, Rui Loja
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (05): : 901 - 925
  • [35] The nonholonomic bracket on contact mechanical systems
    Jimenez, Victor M.
    de Leon, Manuel
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 213
  • [36] The Aubry Set and Mather Set in the Embedded Contact Hamiltonian System
    Li, Xia
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (07) : 1294 - 1302
  • [37] The Aubry Set and Mather Set in the Embedded Contact Hamiltonian System
    Xia Li
    Acta Mathematica Sinica, English Series, 2022, 38 : 1294 - 1302
  • [38] A Discrete Hamilton-Jacobi Theory for Contact Hamiltonian Dynamics
    Esen, Ogul
    Sardon, Cristina
    Zajac, Marcin
    MATHEMATICS, 2024, 12 (15)
  • [39] Constrained dynamics: generalized Lie symmetries, singular Lagrangians, and the passage to Hamiltonian mechanics
    Speliotopoulos, Achilles D.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2020, 4 (06): : 1 - 24
  • [40] Feedback and integrability of Port Hamiltonian Systems
    Xia, Qianqian
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 805 - 810