Evapotranspiration estimation using high-resolution aerial imagery and pySEBAL for processing tomatoes

被引:1
作者
Peddinti, Srinivasa Rao [1 ]
Nicolas, Floyid [2 ]
Raij-Hoffman, Iael [1 ,3 ]
Kisekka, Isaya [1 ,2 ]
机构
[1] Univ Calif Davis, Land Air & Water Resources, Davis, CA 95616 USA
[2] Univ Calif Davis, Biol & Agr Engn, Davis, CA 95616 USA
[3] Southern Arava R&D, IL-888200 DN Hevel Eilot, Israel
关键词
ENERGY-BALANCE; MAPPING EVAPOTRANSPIRATION; FLUX MEASUREMENTS; WINTER-WHEAT; SATELLITE; NDVI; EVAPORATION; LYSIMETER; AIRCRAFT; HEAT;
D O I
10.1007/s00271-024-00943-5
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The use of high-resolution aerial imagery for assessing actual crop evapotranspiration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left({ET}_{a}\right)$$\end{document} holds the potential to optimize the use of limited water resources in agriculture. Despite this potential, there is a shortage of information regarding the effectiveness of energy balance algorithms, initially designed for satellite remote sensing in estimating \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {ET}_{a}$$\end{document} using aerial imagery. This study addresses this gap by employing the remote sensing model pySEBAL (Surface Energy Balance Algorithm for Land) in conjunction with high-resolution aerial imagery to estimate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {ET}_{a}$$\end{document} for processing tomatoes. Throughout the 2021 growing season, an aircraft captured multispectral and thermal imagery over a processing tomato field near Esparto, California, USA. Simultaneously, an eddy covariance flux tower within the field measured high-frequency turbulent fluxes and low-frequency biometeorology variables essential for evaluating the energy balance. The comprehensive assessment of energy balance components, including \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {ET}_{a}$$\end{document} , yielded compelling evidence that pySEBAL accurately estimated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {ET}_{a}$$\end{document} at high spatial resolution. The root mean square error (RMSE) and normalized RMSE for various energy balance components were as follows: 33 W m- 2 (12%) for latent heat flux, 29 W m- 2 (35%) for sensible heat flux, 24 W m- 2 (4%) for net radiation, and 10 W m- 2 (15%) for soil heat flux. Additionally, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {ET}_{a}$$\end{document} exhibited an RMSE and NRMSE of 0.26 mm d- 1 (6%). Moreover, the spatial mapping of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {ET}_{a}$$\end{document} across the processing tomato field visually depicted the spatial variability associated with irrigation scheduling, crop development, areas affected by disease, and soil heterogeneity. This research underscores the value of high resolution spatial aerial imagery and pySEBAL algorithm for estimating \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {ET}_{a}$$\end{document} variability in the field, a crucial aspect for guiding precision irrigation management and ensuring the optimal use of limited water resources in agriculture.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 67 条
[1]   Unmanned Aerial Vehicles in Hydrology and Water Management: Applications, Challenges, and Perspectives [J].
Acharya, Bharat Sharma ;
Bhandari, Mahendra ;
Bandini, Filippo ;
Pizarro, Alonso ;
Perks, Matthew ;
Joshi, Deepak Raj ;
Wang, Sheng ;
Dogwiler, Toby ;
Ray, Ram L. ;
Kharel, Gehendra ;
Sharma, Sadikshya .
WATER RESOURCES RESEARCH, 2021, 57 (11)
[2]  
Allen RG, 2007, J IRRIG DRAIN ENG, V133, P380, DOI [10.1061/(ASCE)0733-9437(2007)133:4(380), 10.1061/(ASCE)0733-9437(2007)133:4(395)]
[3]   Field-Scale Assessment of Land and Water Use Change over the California Delta Using Remote Sensing [J].
Anderson, Martha ;
Gao, Feng ;
Knipper, Kyle ;
Hain, Christopher ;
Dulaney, Wayne ;
Baldocchi, Dennis ;
Eichelmann, Elke ;
Hemes, Kyle ;
Yang, Yun ;
Medellin-Azuara, Josue ;
Kustas, William .
REMOTE SENSING, 2018, 10 (06)
[4]   A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses [J].
Arnal Barbedo, Jayme Garcia .
DRONES, 2019, 3 (02) :1-27
[5]  
Bastiaanssen W GM., 1995, Regionalization of surface flux densities and moisture indicators in composite terrain
[6]   SEBAL model with remotely sensed data to improve water-resources management under actual field conditions [J].
Bastiaanssen, WGM ;
Noordman, EJM ;
Pelgrum, H ;
Davids, G ;
Thoreson, BP ;
Allen, RG .
JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2005, 131 (01) :85-93
[7]  
Bastiaanssen WGM, 1998, J HYDROL, V212, P213, DOI [10.1016/S0022-1694(98)00254-6, 10.1016/S0022-1694(98)00253-4]
[8]   SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey [J].
Bastiaanssen, WGM .
JOURNAL OF HYDROLOGY, 2000, 229 (1-2) :87-100
[9]   Remote Sensing Energy Balance Model for the Assessment of Crop Evapotranspiration and Water Status in an Almond Rootstock Collection [J].
Bellvert, Joaquim ;
Nieto, Hector ;
Pelecha, Ana ;
Jofre-Cekalovi, Christian ;
Zazurca, Lourdes ;
Miarnau, Xavier .
FRONTIERS IN PLANT SCIENCE, 2021, 12
[10]   ON THE USE OF NDVI PROFILES AS A TOOL FOR AGRICULTURAL STATISTICS - THE CASE-STUDY OF WHEAT YIELD ESTIMATE AND FORECAST IN EMILIA-ROMAGNA [J].
BENEDETTI, R ;
ROSSINI, P .
REMOTE SENSING OF ENVIRONMENT, 1993, 45 (03) :311-326