Shear Strength of Ultra-High-Performance Concrete Beams without Stirrups-A Review Based on a Database

被引:3
|
作者
Huang, Yuan [1 ,2 ]
Yao, Gaozhan [1 ]
机构
[1] Hunan Univ, Coll Civil Engn, Changsha 410082, Peoples R China
[2] Hunan Univ, Coll Civil Engn, Hunan Prov Key Lab Damage Diag Engn Struct, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
UHPC; beam; shear strength; size effects; calculation models; STEEL FIBERS; BEHAVIOR; UHPC; DURABILITY; POWDER; SIZE; RESISTANCE; INCLUSION; BRIDGE; DEPTH;
D O I
10.3390/buildings14051212
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a comprehensive study on ultra-high-performance concrete (UHPC) beams without stirrups, where the test data of 487 beams were collected, and an experimental database was established. Four distinct shear strength calculation models for UHPC beams were examined in the study. These models were created from national specification guides. The results indicate that while the code equation is useful for predicting UHPC beam shear capacity, it consistently underestimates actual values, with a mean experimental-to-calculated ratio above 1.5. The database was also used to study the impacts of the compressive strength of UHPC, the shear span-to-depth ratio, the fiber volume fraction, and the reinforcement ratio on the shear strength of UHPC beams. The findings showed that the shear span-to-depth ratio significantly affected the shear load-bearing capacity of UHPC beams. The increase in the compressive strength of UHPC, fiber volume fraction, and reinforcement ratio positively affected the shear strength of UHPC beams to varying degrees. Additionally, there were size effects for beams with a shear span-to-depth ratio of less than 1.5 and an effective depth of more than 300. In addition, coefficients accounting for fiber influence and the shear span-to-depth ratio were incorporated to develop an enhanced formula for UHPC beams. The empirical data from the database tests revealed that the average ratio of the beams' experimental shear capacity to the values predicted by the modified equation is 1.3, with a standard deviation of 0.74. These results suggest that the refined equation offers improved calculation precision and broader applicability. Eventually, a summary of the issues pertaining to the shear performance of UHPC beams and the key future research directions is provided to facilitate a clearer comprehension and awareness of emerging concepts for scholars within the discipline.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Experimental study on shear behaviors of segmented cast ultra-high-performance fiber-reinforced concrete (UHPFRC) beams with/ out stirrups
    Feng, Zheng
    Lu, Peitao
    Ke, Lu
    Li, Chuanxi
    Zhang, Wangchen
    Yoo, Doo-Yeol
    ENGINEERING STRUCTURES, 2025, 328
  • [42] Shear strength prediction for steel fiber reinforced concrete beams without stirrups
    Zhang, Fasheng
    Ding, Yining
    Xu, Jing
    Zhang, Yulin
    Zhu, Weiqing
    Shi, Yunxing
    ENGINEERING STRUCTURES, 2016, 127 : 101 - 116
  • [43] Shear strength of steel fiber-reinforced concrete beams without stirrups
    Kwak, YK
    Eberhard, MO
    Kim, WS
    Kim, J
    ACI STRUCTURAL JOURNAL, 2002, 99 (04) : 530 - 538
  • [44] Shear Behavior of Reinforced Concrete Beams with High-Strength Stirrups
    Lee, Jung-Yoon
    Choi, Im-Jun
    Kim, Sang-Woo
    ACI STRUCTURAL JOURNAL, 2011, 108 (05) : 620 - 629
  • [45] A Model for Shear Strength of FRP Bar Reinforced Concrete Beams without Stirrups
    Gao, Danying
    Zhang, Changhui
    ADVANCES IN CIVIL ENGINEERING, 2020, 2020
  • [47] Strengthening of shear-dominant reinforced concrete beams with ultra-high-performance concrete jacketing
    Hong, Sung-Gul
    Lim, Woo-Young
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 365
  • [48] Size Effect on Shear Strength of FRP Reinforced Concrete Beams without Stirrups
    Alam, M. S.
    Hussein, A.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2013, 17 (04) : 507 - 516
  • [49] Shear Strength of Concrete Beams without Stirrups Made with Recycled Coarse Aggregate
    Sagheer, Abdullah M.
    Tabsh, Sami W.
    BUILDINGS, 2023, 13 (01)
  • [50] Shear behavior and strength prediction of HFRP reinforced concrete beams without stirrups
    Gu, Zhiqiang
    Hu, Yubo
    Gao, Danying
    Wang, Tao
    Yang, Lin
    ENGINEERING STRUCTURES, 2023, 297