机构:
Univ Warwick, Math Inst, Coventry, EnglandUniv Warwick, Math Inst, Coventry, England
Chakraborti, Debsoumya
[1
]
Kim, Jaehoon
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South KoreaUniv Warwick, Math Inst, Coventry, England
Kim, Jaehoon
[2
]
Lee, Hyunwoo
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
Inst Basic Sci IBS, Extremal Combinator & Probabil Grp ECOPRO, Daejeon, South KoreaUniv Warwick, Math Inst, Coventry, England
Lee, Hyunwoo
[2
,3
]
Seo, Jaehyeon
论文数: 0引用数: 0
h-index: 0
机构:
Yonsei Univ, Dept Math, Seoul, South KoreaUniv Warwick, Math Inst, Coventry, England
Seo, Jaehyeon
[4
]
机构:
[1] Univ Warwick, Math Inst, Coventry, England
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[3] Inst Basic Sci IBS, Extremal Combinator & Probabil Grp ECOPRO, Daejeon, South Korea
Tournament;
Transversal;
Hamilton path and cycle;
Rainbow subgraphs;
D O I:
10.1007/s00493-024-00123-1
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
It is well-known that every tournament contains a Hamilton path, and every strongly connected tournament contains a Hamilton cycle. This paper establishes transversal generalizations of these classical results. For a collection T=(T1,& ctdot;,Tm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}=(T_1,\dots ,T_m)$$\end{document} of not-necessarily distinct tournaments on a common vertex set V, an m-edge directed graph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document} with vertices in V is called a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}$$\end{document}-transversal if there exists a bijection phi:E(D)->[m]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi :E(\mathcal {D})\rightarrow [m]$$\end{document} such that e is an element of E(T phi(e))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E(T_{\phi (e)})$$\end{document} for all e is an element of E(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E(\mathcal {D})$$\end{document}. We prove that for sufficiently large m with m=|V|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=|V|-1$$\end{document}, there exists a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}$$\end{document}-transversal Hamilton path. Moreover, if m=|V|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=|V|$$\end{document} and at least m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m-1$$\end{document} of the tournaments T1,& mldr;,Tm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1,\ldots ,T_m$$\end{document} are assumed to be strongly connected, then there is a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}$$\end{document}-transversal Hamilton cycle. In our proof, we utilize a novel way of partitioning tournaments which we dub H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document}-partition.
机构:
Inst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South Korea
Chakraborti, Debsoumya
Kim, Jaehoon
论文数: 0引用数: 0
h-index: 0
机构:
KAIST Daejeon, Dept Math Sci, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South Korea
Kim, Jaehoon
Lee, Hyunwoo
论文数: 0引用数: 0
h-index: 0
机构:
KAIST Daejeon, Dept Math Sci, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South Korea
Lee, Hyunwoo
Liu, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Inst Basic Sci IBS, Extremal Combinator & Probabil Grp ECOPRO, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South Korea
Liu, Hong
Seo, Jaehyeon
论文数: 0引用数: 0
h-index: 0
机构:
Yonsei Univ, Dept Math, Seoul, South KoreaInst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South Korea
机构:
Inst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South Korea
Chakraborti, Debsoumya
Kim, Jaehoon
论文数: 0引用数: 0
h-index: 0
机构:
KAIST Daejeon, Dept Math Sci, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South Korea
Kim, Jaehoon
Lee, Hyunwoo
论文数: 0引用数: 0
h-index: 0
机构:
KAIST Daejeon, Dept Math Sci, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South Korea
Lee, Hyunwoo
Liu, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Inst Basic Sci IBS, Extremal Combinator & Probabil Grp ECOPRO, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South Korea
Liu, Hong
Seo, Jaehyeon
论文数: 0引用数: 0
h-index: 0
机构:
Yonsei Univ, Dept Math, Seoul, South KoreaInst Basic Sci IBS, Discrete Math Grp DIMAG, Daejeon, South Korea