Dauricine attenuates ovariectomized-induced bone loss and RANKL-induced osteoclastogenesis via inhibiting ROS-mediated NF- κB and NFATc1 activity

被引:5
作者
Lin, Xixi [1 ,2 ]
Yuan, Guixin [1 ,2 ,3 ]
Yang, Bin [4 ]
Xie, Chunlan [1 ]
Zhou, Zhigao [3 ]
Liu, Ying [1 ,2 ]
Liu, Zhijuan [5 ,6 ,7 ]
Wu, Zuoxing [1 ,2 ]
Akimoto, Yoshie [8 ]
Li, Na [1 ,2 ]
Xu, Ren [1 ,2 ,6 ,7 ]
Song, Fangming [2 ,5 ,6 ,7 ]
机构
[1] Xiamen Univ, Affiliated Hosp 1, ICMRS Collaborating Ctr Skeletal Stem Cells, Sch Med,State Key Lab Cellular Stress Biol, Xiamen 361100, Fujian, Peoples R China
[2] Xiamen Univ, Sch Med, Xiamen Key Lab Regenerat Med, Fujian Prov Key Lab Organ & Tissue Regenerat, Xiamen 361100, Peoples R China
[3] Shantou Univ Med Coll, Affiliated Hosp 2, Dept Orthoped, Shantou 515044, Guangdong, Peoples R China
[4] Xiamen Univ, Dept Anesthesiol, Affiliated Hosp 1, Xiamen 361000, Fujian, Peoples R China
[5] Guangxi Med Univ, Life Sci Inst, Nanning 530021, Guangxi, Peoples R China
[6] Guangxi Med Univ, Collaborat Innovat Ctr Regenerat Med, Nanning 530021, Guangxi, Peoples R China
[7] Guangxi Med Univ, Med Bio Resource Dev & Applicat Coconstructed Prov, Nanning 530021, Guangxi, Peoples R China
[8] Iskra Ind Co Ltd, Tokyo 1030027, Japan
基金
中国国家自然科学基金;
关键词
Osteoporosis; Osteoclast; Dauricine; ROS; DIFFERENTIATION; OSTEOPOROSIS; DEFICIENCY; HIF-1; HO-1;
D O I
10.1016/j.phymed.2024.155559
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis. Purpose: We aim to search for natural compound that may suppress osteoclast formation and function. Study design: In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro , as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo . Methods: Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real -time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo , an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro -CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model. Results: In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau ' s inhibition of osteoclasts may be associated with NF- kappa B signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirm ed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF- kappa B/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease. Conclusion: Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Poria cocos polysaccharide attenuates RANKL-induced osteoclastogenesis by suppressing NFATc1 activity and phosphorylation of ERK and STAT3
    Song, Dezhi
    Cao, Zhen
    Tickner, Jennifer
    Qiu, Heng
    Wang, Chao
    Chen, Kai
    Wang, Ziyi
    Guo, Chunyu
    Dong, Shiwu
    Xu, Jiake
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2018, 647 : 76 - 83
  • [22] Kirenol inhibits RANKL-induced osteoclastogenesis and prevents ovariectomized-induced osteoporosis via suppressing the Ca2+-NFATc1 and Cav-1 signaling pathways
    Zou, Binhua
    Zheng, Jiehuang
    Deng, Wende
    Tan, Yanhui
    Jie, Ligang
    Qu, Yuan
    Yang, Qin
    Ke, Minhong
    Ding, Zongbao
    Chen, Yan
    Yu, Qinghong
    Li, Xiaojuan
    PHYTOMEDICINE, 2021, 80
  • [23] Asiatic Acid Inhibits OVX-Induced Osteoporosis and Osteoclastogenesis Via Regulating RANKL-Mediated NF-κb and Nfatc1 Signaling Pathways
    Hong, Guoju
    Zhou, Lin
    Han, Xiaorui
    Sun, Ping
    Chen, Zhenqiu
    He, Wei
    Tickner, Jennifer
    Chen, Leilei
    Shi, Xuguang
    Xu, Jiake
    FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [24] Lanthanum Chloride Attenuates Osteoclast Formation and Function Via the Downregulation of Rankl-Induced Nf-κb and Nfatc1 Activities
    Jiang, Chuan
    Shang, Jiangyinzi
    Li, Zhe
    Qin, An
    Ouyang, Zhengxiao
    Qu, Xinhua
    Li, Haowei
    Tian, Bo
    Wang, Wengang
    Wu, Chuanlong
    Wang, Jinwu
    Dai, Min
    JOURNAL OF CELLULAR PHYSIOLOGY, 2016, 231 (01) : 142 - 151
  • [25] Maackiain dampens osteoclastogenesis via attenuating RANKL-stimulated NF-κB signalling pathway and NFATc1 activity
    Liu, Yuhao
    Zeng, Weizai
    Ma, Chao
    Wang, Ziyi
    Wang, Chao
    Li, Shaobin
    He, Wei
    Zhang, Qingwen
    Xu, Jiake
    Zhou, Chi
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2020, 24 (21) : 12308 - 12317
  • [26] 12-Deoxyphorbol-13-Hexadecanoate Abrogates OVX-Induced Bone Loss in Mice and Osteoclastogenesis via Inhibiting ROS Level and Regulating RANKL-Mediated NFATc1 Activation
    He, Qi
    Yang, Junzheng
    Chen, Delong
    Li, Yejia
    Gong, Dawei
    Ge, Hui
    Wang, Zihao
    Wang, Haibin
    Chen, Peng
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [27] Euphoesulatin A prevents osteoclast differentiation and bone loss via inhibiting RANKL-induced ROS production and NF-κB and MAPK signal pathways
    Zhang, Yu-ting
    Hu, Chen
    Zhang, Song-xuan
    Zhou, Hui-hao
    Xu, Jun
    Ma, Jian-da
    Dai, Lie
    Gu, Qiong
    BIOORGANIC CHEMISTRY, 2022, 119
  • [28] Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis
    Chen, Xiao
    Zhi, Xin
    Pan, Panpan
    Cui, Jin
    Cao, Liehu
    Weng, Weizong
    Zhou, Qirong
    Wang, Lin
    Zhai, Xiao
    Zhao, Qingiie
    Hu, Honggang
    Huang, Biaotong
    Su, Jiacan
    FASEB JOURNAL, 2017, 31 (11) : 4855 - 4865
  • [29] Tanshinone I attenuates estrogen-deficiency bone loss via inhibiting RANKL-induced MAPK and NF-κB signaling pathways
    Ma, Chao
    Wang, Zhangzheng
    Mo, Liang
    Wang, Xiaochao
    Zhou, Guangquan
    Yi, Chunzhi
    Niu, Wei
    Liu, Yuhao
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2024, 127
  • [30] Mangiferin Attenuates Osteoclastogenesis, Bone Resorption, and RANKL-Induced Activation of NF-κB and ERK
    Ang, Estabelle
    Liu, Qian
    Qi, Ming
    Liu, Hua G.
    Yang, Xiaohong
    Chen, Honghui
    Zheng, Ming H.
    Xu, Jiake
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2011, 112 (01) : 89 - 97