ZnIn2S4 /MOF S-scheme photocatalyst for H2 production and its femtosecond transient absorption mechanism

被引:36
|
作者
Cai, Jiajie [1 ]
Liu, Bowen [1 ]
Zhang, Shumin [2 ]
Wang, Linxi [3 ]
Wu, Zhen [4 ]
Zhang, Jianjun [3 ]
Cheng, Bei [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Changsha Univ, Hunan Key Lab Appl Environm Photocatalysis, Changsha 410022, Peoples R China
[3] China Univ Geosci, Fac Mat Sci & Chem, Lab Solar Fuel, 68 Jincheng St, Wuhan 430078, Peoples R China
[4] Ordos Inst Technol, Dept Chem Engn, Ordos 017000, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; S-scheme heterojunction; Hydrogen production; Selective oxidation; Benzylamine; Femtosecond transient absorption; CHARGE SEPARATION; ORGANIC FRAMEWORK; HETEROJUNCTION; EFFICIENT; HETEROSTRUCTURE; CO2;
D O I
10.1016/j.jmst.2024.02.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photocatalytic water splitting is a popular pathway for H2 evolution, but the slow water oxidation greatly hampers the overall activity. To harness photogenerated holes in an efficient and lucrative way, the water oxidation reaction is replaced by selective oxidation of organic compounds to achieve simultaneous production of H2 and value-added chemicals. Herein, an alternative tactic is reported where an organic compound (benzylamine, BA) not only serves as the precursor for N-benzylidene-benzylamine (NBBA) production but also provides hydrogen sources for H2 evolution, achieving the goal under anhydrous conditions. This process is realized using an S-scheme photocatalyst composed of ZnIn2 S4 and the UiO66-NH2 (U6N) metal-organic framework (MOF). The S-scheme carrier transfer mechanism was validated by in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) and femtosecond transient absorption (fs-TA) spectroscopy. With increased carrier efficiency and reinforced redox power endowed by the Sscheme heterojunction, the composite performed better than ZnIn2 S4 and MOF. The performance was further ameliorated by Pt-cocatalyst modification, achieving an H2 production rate of 5275 mu mol h-1 g-1 as well as BA conversion of 94.3% with 99.3% NBBA selectivity. Mechanistic studies reveal that BA is initially oxidized to carbon-centered radicals and further to imines along with the release of protons. The imine reacts with another BA molecule to form NBBA, while the protons are reduced to H2 . This work provides new insights into concurrent photocatalytic H2 production and selective organic oxidation from organic amines using S-scheme photocatalysts. (c) 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [31] Ultrafast electron transfer at the ZnIn2S4/MoS2 S-scheme interface for photocatalytic hydrogen evolution
    Bhatt, Himanshu
    Patel, Mahammed Suleman
    Goswami, Tanmay
    Yadav, Dharmendra K.
    Patra, Atal Swathi
    Ghosh, Hirendra N.
    NANOSCALE, 2025, 17 (13) : 7908 - 7916
  • [32] Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method
    Song, Mingming
    Song, Xianghai
    Liu, Xin
    Zhou, Weiqiang
    Huo, Pengwei
    CHINESE JOURNAL OF CATALYSIS, 2023, 51 : 180 - 192
  • [33] WO3 Nanosheet/ZnIn2S4 S-Scheme Heterojunctions for Enhanced CO2 Photoreduction
    Xu, Ao
    Zhang, Yukai
    Fan, Hougang
    Liu, Xiaoyan
    Wang, Fengyou
    Qu, Xin
    Yang, Lili
    Li, Xin
    Cao, Jian
    Wei, Maobin
    ACS APPLIED NANO MATERIALS, 2024, 7 (03) : 3488 - 3498
  • [34] Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production
    Zhang, Keyu
    Li, Yunfeng
    Yuan, Shidan
    Zhang, Luohong
    Wang, Qian
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (06)
  • [35] Boosting photocatalytic activity of CdLa2S4/ZnIn2S4 S-scheme heterojunctions with spatial separation of photoexcited carries
    Dai, Meng
    Yu, Huijun
    Chen, Wenhan
    Qu, Kongyu-Ang
    Zhai, Dong
    Liu, Chengcheng
    Zhao, Shan
    Wang, Shuguang
    He, Zuoli
    CHEMICAL ENGINEERING JOURNAL, 2023, 470
  • [36] Bridging the gap between metallic MoO2 and ZnIn2S4 for enhanced photocatalytic H2 production
    Zhang, Xiaorui
    Ye, Hanlin
    Zeng, Zikang
    Sa, Ke
    Jia, Jin
    Yang, Ziheng
    Xu, Shiling
    Han, Chuang
    Liang, Yujun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 347
  • [37] Decorating ZnS by ZnIn2S4 to fabricate hybrid photocatalyst ZnIn2S4/ZnS for high photocatalytic hydrogen generation performance
    Li, Ming
    Li, Shuang
    Li, Yubao
    He, Ping
    Xiao, Yao
    Chen, Jiufu
    Ren, Tongyan
    MATERIALS LETTERS, 2023, 334
  • [38] Effect of active S of ZnIn2S4 on the photocatalytic H2 production by water splitting under visible light irradiation
    Li, Xiaolang
    Fu, Haitao
    Yang, Xiaohong
    Xiong, Shixian
    An, Xizhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 395 - 405
  • [39] Efficient H2 production over CuCo2S4/g-C3N4 photocatalyst with S-scheme transfer route
    Gao, Ting
    Li, Chenxi
    Yuan, Juan
    Tian, Jingzhuo
    Sun, Tao
    Ma, Haixia
    Liu, Enzhou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 61 : 275 - 283
  • [40] Interior and Surface Synergistic Modifications Modulate the SnNb2O6/Ni-Doped ZnIn2S4 S-Scheme Heterojunction for Efficient Photocatalytic H2 Evolution
    Li, Chunxue
    Liu, Xiaoteng
    Ding, Guixiang
    Huo, Pengwei
    Yan, Yan
    Yan, Yongsheng
    Liao, Guangfu
    INORGANIC CHEMISTRY, 2022, 61 (11) : 4681 - 4689