ZnIn2S4 /MOF S-scheme photocatalyst for H2 production and its femtosecond transient absorption mechanism

被引:36
|
作者
Cai, Jiajie [1 ]
Liu, Bowen [1 ]
Zhang, Shumin [2 ]
Wang, Linxi [3 ]
Wu, Zhen [4 ]
Zhang, Jianjun [3 ]
Cheng, Bei [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Changsha Univ, Hunan Key Lab Appl Environm Photocatalysis, Changsha 410022, Peoples R China
[3] China Univ Geosci, Fac Mat Sci & Chem, Lab Solar Fuel, 68 Jincheng St, Wuhan 430078, Peoples R China
[4] Ordos Inst Technol, Dept Chem Engn, Ordos 017000, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; S-scheme heterojunction; Hydrogen production; Selective oxidation; Benzylamine; Femtosecond transient absorption; CHARGE SEPARATION; ORGANIC FRAMEWORK; HETEROJUNCTION; EFFICIENT; HETEROSTRUCTURE; CO2;
D O I
10.1016/j.jmst.2024.02.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photocatalytic water splitting is a popular pathway for H2 evolution, but the slow water oxidation greatly hampers the overall activity. To harness photogenerated holes in an efficient and lucrative way, the water oxidation reaction is replaced by selective oxidation of organic compounds to achieve simultaneous production of H2 and value-added chemicals. Herein, an alternative tactic is reported where an organic compound (benzylamine, BA) not only serves as the precursor for N-benzylidene-benzylamine (NBBA) production but also provides hydrogen sources for H2 evolution, achieving the goal under anhydrous conditions. This process is realized using an S-scheme photocatalyst composed of ZnIn2 S4 and the UiO66-NH2 (U6N) metal-organic framework (MOF). The S-scheme carrier transfer mechanism was validated by in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) and femtosecond transient absorption (fs-TA) spectroscopy. With increased carrier efficiency and reinforced redox power endowed by the Sscheme heterojunction, the composite performed better than ZnIn2 S4 and MOF. The performance was further ameliorated by Pt-cocatalyst modification, achieving an H2 production rate of 5275 mu mol h-1 g-1 as well as BA conversion of 94.3% with 99.3% NBBA selectivity. Mechanistic studies reveal that BA is initially oxidized to carbon-centered radicals and further to imines along with the release of protons. The imine reacts with another BA molecule to form NBBA, while the protons are reduced to H2 . This work provides new insights into concurrent photocatalytic H2 production and selective organic oxidation from organic amines using S-scheme photocatalysts. (c) 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [21] An Inorganic/Organic S-Scheme Heterojunction H2-Production Photocatalyst and its Charge Transfer Mechanism
    Cheng, Chang
    He, Bowen
    Fan, Jiajie
    Cheng, Bei
    Cao, Shaowen
    Yu, Jiaguo
    ADVANCED MATERIALS, 2021, 33 (22)
  • [22] Cooperative S-S coupling and H2 production from photocatalytic dehydrogenation of thiols over ReSe2/ZnIn2S4/ZnIn 2 S 4 heterostructure
    Yang, Xin
    Jin, Yanchao
    Ke, Sunzai
    Li, Mengqing
    Yang, Xuhui
    Shen, Lijuan
    Yang, Min-Quan
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [23] Controllable engineering of ZnIn2S4 with sulfur vacancy as an efficient piezocatalyst toward H2 production
    Huang, Mianli
    Zhang, Hongli
    Xu, Miaoqiong
    Chen, Wen-Jie
    Pan, Xiaoyang
    Liang, Shijing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1016
  • [24] Ag2S-Modified ZnIn2S4 Nanosheets for Photocatalytic H2 Generation
    Liu, Jingyuan
    Chen, Gang
    Sun, Jingxue
    ACS APPLIED NANO MATERIALS, 2020, 3 (11) : 11017 - 11024
  • [25] A novel hydrangea-like ZnIn2S4/FePO4 S-scheme heterojunction via internal electric field for boosted photocatalytic H2 evolution
    Wang, Shikai
    Zhang, Dong
    Zhang, Dafeng
    Pu, Xipeng
    Liu, Junchang
    Li, Hengshuai
    Cai, Peiqing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 967
  • [26] Anchoring ZnIn2S4 nanosheets on cross-like FeSe2 to construct photothermal-enhanced S-scheme heterojunction for photocatalytic H2 evolution
    Liu, Xin
    Wang, Shikai
    Cao, Jinghao
    Yu, Jiahui
    Dong, Jixian
    Zhao, Yutong
    Zhao, Fuping
    Zhang, Dafeng
    Pu, Xipeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 673 : 463 - 474
  • [27] Enhanced H2 Evolution on ZnIn2S4 Photocatalyst under Visible Light by Surface Modification with Metal Cyanoferrates
    Matsuoka, Hikaru
    Higashi, Masanobu
    Nakada, Akinobu
    Tomita, Osamu
    Abe, Ryu
    CHEMISTRY LETTERS, 2018, 47 (07) : 941 - 944
  • [28] ZnIn2S4 synergized with BiVO4 to construct S-scheme heterojunction photocatalysts for highly efficient production of oxygen and benzaldehyde
    Mei, Shaobin
    He, Pengpeng
    Li, Jinhe
    Sun, Lijuan
    Ren, Wei
    Wu, Chunxia
    Wang, Weikang
    Liu, Qinqin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (03):
  • [29] S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation
    Zhu, Bicheng
    Xu, Jingsan
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2024, 43 (08)
  • [30] Visible-light-driven ZnIn2S4/CdIn2S4 composite photocatalyst with enhanced performance for photocatalytic H2 evolution
    Yu, Yaoguang
    Chen, Gang
    Wang, Gang
    Lu, Zushun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (03) : 1278 - 1285