Overlooked Video Classification in Weakly Supervised Video Anomaly Detection

被引:4
|
作者
Tan, Weijun [1 ,2 ]
Yao, Qi [2 ]
Liu, Jingfeng [2 ]
机构
[1] LinkSprite Technol, Longmt, CO 80503 USA
[2] Jovis Deepcam Res, Shenzhen, Peoples R China
来源
2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024 | 2024年
关键词
D O I
10.1109/WACVW60836.2024.00029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current weakly supervised video anomaly detection algorithms mostly use multiple instance learning (MIL) or their varieties. Almost all recent approaches focus on how to select the correct snippets for training to improve performance. They overlook or do not realize the power of whole-video classification in improving the performance of anomaly detection, particularly on negative videos. In this paper, we study the power of whole-video classification supervision explicitly using a BERT or LSTM. With this BERT or LSTM, CNN features of all snippets of a video can be aggregated into a single feature which can be used for whole-video classification. This simple yet powerful whole-video classification supervision, combined with the MIL and RTFM framework, brings extraordinary performance improvement on all three major video anomaly detection datasets. Particularly it improves the mean average precision (mAP) on the XD-Violence from SOTA 78.84% to new 82.10%. These results demonstrate this video classification can be combined with other anomaly detection algorithms to achieve better performance. The code is publicly available at https://github. com/wjtan99/BERT_Anomaly_Video_Classification.
引用
收藏
页码:212 / 220
页数:9
相关论文
共 50 条
  • [1] Weakly supervised video anomaly detection with temporal attention module
    Song, Wonjoon
    Kim, Jonghyun
    Kim, Joongkyu
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 982 - 985
  • [2] Sequential attention mechanism for weakly supervised video anomaly detection
    Ullah, Waseem
    Ullah, Fath U. Min
    Khan, Zulfiqar Ahmad
    Baik, Sung Wook
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 230
  • [3] Weakly supervised video anomaly detection based on hyperbolic space
    Qi, Meilin
    Wu, Yuanyuan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] Event-driven weakly supervised video anomaly detection
    Sun, Shengyang
    Gong, Xiaojin
    IMAGE AND VISION COMPUTING, 2024, 149
  • [5] A Convolutional Autoencoder Approach for Weakly Supervised Anomaly Video Detection
    Phan Nguyen Duc Hieu
    Phan Duy Hung
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2023, 2023, 14162 : 138 - 150
  • [6] BatchNorm-Based Weakly Supervised Video Anomaly Detection
    Zhou, Yixuan
    Qu, Yi
    Xu, Xing
    Shen, Fumin
    Song, Jingkuan
    Tao Shen, Heng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13642 - 13654
  • [7] ViCap-AD: video caption-based weakly supervised video anomaly detection
    Lim, Junwoo
    Lee, Juyeob
    Kim, Hyunji
    Park, Eunil
    MACHINE VISION AND APPLICATIONS, 2025, 36 (03)
  • [8] Attention-based framework for weakly supervised video anomaly detection
    Hualin Ma
    Liyan Zhang
    The Journal of Supercomputing, 2022, 78 : 8409 - 8429
  • [9] Unbiased Multiple Instance Learning for Weakly Supervised Video Anomaly Detection
    Lv, Hui
    Yue, Zhongqi
    Sun, Qianru
    Luo, Bin
    Cui, Zhen
    Zhang, Hanwang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 8022 - 8031
  • [10] Attention-based framework for weakly supervised video anomaly detection
    Ma, Hualin
    Zhang, Liyan
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (06): : 8409 - 8429