Inherent scatter in pool boiling critical heat flux on reference surfaces

被引:3
作者
Hadzic, Armin [1 ]
Moze, Matic [1 ]
Zupancic, Matevz [1 ]
Golobic, Iztok [1 ]
机构
[1] Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
关键词
Critical heat flux; Boiling heat transfer; Pool boiling; Reference surface; Copper surface; Heat flux measurement; ENHANCEMENT; NUCLEATION; ROUGHNESS; GRAPHENE; COATINGS;
D O I
10.1016/j.ijthermalsci.2024.109240
中图分类号
O414.1 [热力学];
学科分类号
摘要
Evaluating boiling heat transfer enhancement depends on reliable reference values in the form of boiling curves and critical heat flux (CHF) values. Typically, the evaluation is performed in pool boiling conditions with water at atmospheric pressure. Literature includes a wide scatter in reference values, prompting this study to comprehensively evaluate boiling performance and CHF on reference surfaces to investigate the scatter ' s origin and set a definitive reference value. The study recorded 125 boiling curves and CHF values on nominally identical bare copper surfaces, establishing an average boiling curve and mean CHF value. Despite consistent experimental conditions, the recorded CHF values displayed significant variability with a mean CHF of 1112 +/- 102 kW m - 2 and a scatter from 902 kW m - 2 (-19 % of average CHF) to 1339 kW m - 2 (+25 % of average CHF). Using Rohsenow ' s correlation on the average boiling curve, a C sf factor of 0.0151 was obtained. The acquired CHF data is proposed to serve as a foundational benchmark for future research in enhancing pool boiling heat transfer.
引用
收藏
页数:10
相关论文
共 71 条
[1]   Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface [J].
Ahn, Ho Seon ;
Lee, Chan ;
Kim, Hyungdae ;
Jo, HangJin ;
Kang, SoonHo ;
Kim, Joonwon ;
Shin, Jeongseob ;
Kim, Moo Hwan .
NUCLEAR ENGINEERING AND DESIGN, 2010, 240 (10) :3350-3360
[2]   Enhancement in the pool boiling heat transfer of copper surface by applying electrophoretic deposited graphene oxide coatings [J].
Alimoradi, Hasan ;
Shams, Mehrzad ;
Ashgriz, Nasser .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2023, 159
[3]  
[Anonymous], 2013, Vachon1968, P239
[4]  
[Anonymous], 2017, ASME INT MECH ENG C, DOI DOI 10.1115/IMECE2017-71303
[5]   Pool boiling with high heat flux enabled by a porous artery structure [J].
Bai, Lizhan ;
Zhang, Lianpei ;
Lin, Guiping ;
Peterson, G. P. .
APPLIED PHYSICS LETTERS, 2016, 108 (23)
[6]   Nucleation site density in pool boiling of saturated pure liquids: Effect of surface microroughness and surface and liquid physical properties [J].
Benjamin, RJ ;
Balakrishnan, AR .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 1997, 15 (01) :32-42
[7]   Boiling-induced surface aging and crystallization fouling of functionalized smooth and laser-textured copper interfaces [J].
Berce, Jure ;
Arhar, Klara ;
Hadzic, Armin ;
Zupancic, Matevz ;
Moze, Matic ;
Golobic, Iztok .
APPLIED THERMAL ENGINEERING, 2024, 242
[8]   Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces [J].
Betz, Amy Rachel ;
Jenkins, James ;
Kim, Chang-Jin 'CJ' ;
Attinger, Daniel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 57 (02) :733-741
[9]   Water immersion cooling of high power density electronics [J].
Birbarah, Patrick ;
Gebrael, Tarek ;
Foulkes, Thomas ;
Stillwell, Andrew ;
Moore, Alexandra ;
Pilawa-Podgurski, Robert ;
Miljkovic, Nenad .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 147
[10]   Nanoparticle-Assisted Pool Boiling Heat Transfer on Micro-Pin-Fin Surfaces [J].
Cao, Zhen ;
Liu, Bin ;
Preger, Calle ;
Zhang, Yong-hai ;
Wu, Zan ;
Messing, Maria E. ;
Deppert, Knut ;
Wei, Jin-jia ;
Sunden, Bengt .
LANGMUIR, 2021, 37 (03) :1089-1101