Multi-Stage Influence Function

被引:0
|
作者
Chen, Hongge [1 ]
Si, Si [2 ]
Li, Yang [2 ]
Chelba, Ciprian [2 ]
Kumar, Sanjiv [2 ]
Boning, Duane [1 ]
Hsieh, Cho-Jui [3 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Google Res, Mountain View, CA USA
[3] UCLA, Los Angeles, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-stage training and knowledge transfer, from a large-scale pretraining task to various finetuning tasks, have revolutionized natural language processing and computer vision resulting in state-of-the-art performance improvements. In this paper, we develop a multi-stage influence function score to track predictions from a finetuned model all the way back to the pretraining data. With this score, we can identify the pretraining examples in the pretraining task that contribute most to a prediction in the finetuning task. The proposed multi-stage influence function generalizes the original influence function for a single model in (Koh & Liang, 2017), thereby enabling influence computation through both pretrained and finetuned models. We study two different scenarios with the pretrained embeddings fixed or updated in the finetuning tasks. We test our proposed method in various experiments to show its effectiveness and potential applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On the Multi-Stage Influence Maximization Problem
    Rahaman, Inzamam
    Hosein, Patrick
    2016 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2016,
  • [2] Multi-stage classification
    Senator, TE
    FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2005, : 386 - 393
  • [3] Multi-stage programming
    Taha, W
    Sheard, T
    ACM SIGPLAN NOTICES, 1997, 32 (08) : 321 - 321
  • [4] INFLUENCE OF THE INTER-STAGE COUPLING FLEXIBILITY ON THE DYNAMICS OF MULTI-STAGE ROTORS
    Nyssen, Florence
    Golinval, Jean-Claude
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2016, VOL 7A, 2016,
  • [5] The multi-stage railgun
    Musolino, A
    Raugi, M
    Rocco, R
    Tellini, A
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (01) : 445 - 449
  • [6] RESIDENCE TIME DISTRIBUTION FUNCTION FOR MULTI-STAGE SYSTEMS WITH BACKMIXING
    HADDAD, AH
    WOLF, D
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1967, 45 (02): : 100 - &
  • [7] Multi-stage neural networks: Function approximator of machine precision
    Wang, Yongji
    Lai, Ching-Yao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 504
  • [8] Multi-stage influence diagrams decision using genetic algorithms
    Yun, Z
    Liu, WY
    Li, J
    DCABES 2004, Proceedings, Vols, 1 and 2, 2004, : 358 - 361
  • [9] Boundary function method for stage number optimization for multi-stage distillation process design
    Jia, Shengkun
    Cao, Xuepu
    Qian, Xing
    Liu, Xingwei
    Luo, Yiqing
    Yuan, Xigang
    CHEMICAL ENGINEERING SCIENCE, 2023, 276
  • [10] Influence of Varying the Stage Aspect Ratio on the Performance of Multi-Stage Savonius Wind Rotors
    Saad, Ahmed S.
    Ookawara, Shinichi
    Ahmed, Mahmoud
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (01):