Coconstruction of Supramolecular Lithium-Conducting Cross-Linked Networks Based on PVDF and Triblock Polymer Nanomicrosphere Solid-State Polymer Electrolytes for Lithium-Metal Batteries

被引:3
作者
Wu, Shuru [1 ]
Wang, Chengyu [1 ]
Li, Shuanghui [1 ]
Lin, Liming [2 ]
Tong, Qingsong [1 ]
Zhu, Mengqi [1 ]
Weng, Jingzheng [1 ]
机构
[1] Fujian Normal Univ, Coll Chem & Mat Sci, Fujian Key Lab Polymer Mat, Fujian Univ High Efficiency Battery Engn Res Ctr, Fuzhou 350007, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou 350007, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
polymer nanomicrosphere; lithium metal batteries; polymer electrolytes; high lithium-ion transferencenumber; interface stability; PERFORMANCE;
D O I
10.1021/acsami.4c03355
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Uneven lithium plating and low ionic conductivity currently impede the realization of high-capacity rechargeable lithium metal batteries. And the conventional poly(ethylene oxide) (PEO) solid-state electrolytes are unsuitable for high-energy-density Li anode applications due to their low lithium-ion transference number and high reactivity with Li metal, leading to detrimental dendrite formation and potentially hazardous exothermic reactions with the electrolyte. In this study, we employ a supramolecular approach to develop a novel polymer solid-state electrolyte based on poly(vinylidene fluoride) (PVDF) and a novel triblock polymer nanomicrosphere, (poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone), (PCL-PEG-PCL). The abundance of carbonyl and ether-oxygen functional groups in PCL-PEG-PCL enhances the lithium coordination environment within the polymer solid-state electrolyte. Additionally, the original C-F moieties of PVDF form hydrogen bonds with C-H and terminal hydroxyl groups in PCL-PEG-PCL, collectively creating a multichannel fast Li+-conducting supramolecular cross-linked network. The resulting electrolyte demonstrates a high ionic conductivity of 1.4 x 10(-3) S cm(-1) and an extended electrochemical window of 5.2 V. Moreover, the electrolyte exhibits a high lithium-ion transference number (t Li + = 0.63) at room temperature and exhibits excellent interfacial compatibility with the lithium metal anode. For the resulting electrolyte utilized in LiFePO4 batteries, the capacity retention of the cells assembled with this electrolyte exceeds 91.3% after 1000 cycles at 25 degrees C and 2 C (0.281 mA cm(-2)).
引用
收藏
页码:28482 / 28492
页数:11
相关论文
共 50 条
  • [31] A high-performance solid-state polymer electrolyte for lithium-metal battery
    Wang, Yumei
    Yi, Qiang
    Xu, Xiaoyu
    Lu, Li
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)
  • [32] Sandwich structured PVDF-HFP-based composite solid electrolytes for solid-state lithium metal batteries
    Xu, Kang
    Xu, Chao
    Jiang, Yujie
    Cai, Jinhai
    Ni, Jiaxi
    Lai, Chunyan
    IONICS, 2022, 28 (07) : 3243 - 3253
  • [33] Ceramicized NASICON-based solid-state electrolytes for lithium metal batteries
    Tsai, Yung-Chun
    Ku, Meng-Chiao
    Hsieh, Chien-Te
    Sung, Po-Yu
    Chen, Pin-Shuan
    Mohanty, Debabrata
    Gandomi, Yasser Ashraf
    Hung, I-Ming
    Patra, Jagabandhu
    Chang, Jeng-Kuei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (07) : 2047 - 2057
  • [34] Flame-Retardant Polyurethane-Based Solid-State Polymer Electrolytes Enabled by Covalent Bonding for Lithium Metal Batteries
    Wu, Lin
    Pei, Fei
    Cheng, Dongming
    Zhang, Yi
    Cheng, Hang
    Huang, Kai
    Yuan, Lixia
    Li, Zhen
    Xu, Henghui
    Huang, Yunhui
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (16)
  • [35] Polyethylene Oxide-Based Solid-State Composite Polymer Electrolytes for Rechargeable Lithium Batteries
    Ding, Wen-Qiang
    Lv, Fei
    Xu, Ning
    Wu, Meng-Tao
    Liu, Jian
    Gao, Xue-Ping
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) : 4581 - 4601
  • [36] Ionic solid-like conductor-assisted polymer electrolytes for solid-state lithium metal batteries
    Yan, Shuaishuai
    Liu, Hao
    Chen, Xiaoxia
    Lu, Yang
    Cao, Qingbin
    Liu, Kai
    SCIENCE CHINA-CHEMISTRY, 2024, : 4116 - 4124
  • [37] Solid polymer electrolytes with dual salts enhance lithium-metal interfacial stability for long cycle performance of lithium batteries
    Liu, Dong
    Liu, Xiaofeng
    Zheng, Lifei
    Chen, Fei
    Guo, Changxiang
    POLYMER, 2024, 313
  • [38] Exploring High Li+ Transference Number Solid-State Electrolytes Based on a Poly(ε-caprolactone) Polymer Matrix with Efficient Lithium Salt Dissociation for Applications in Lithium-Metal Batteries
    Wang, Aolai
    Pei, Dexuan
    Liu, Ziying
    Huang, Shuo
    Cao, Guozhong
    Jin, Hongyun
    Hou, Shuen
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (15) : 8221 - 8228
  • [39] Soft-Rigid Sandwich-Structured Hybrid Electrolytes Based on Polymer-in-Ceramic Electrolytes for Stable-Cycle Solid-State Lithium-Metal Batteries
    Li, Jun
    Shi, Feng
    Liu, Jingjin
    Zhu, Kongjun
    Gao, Tao
    Wang, Jing
    Yan, Kang
    Liu, Jinsong
    CHEMELECTROCHEM, 2022, 9 (19)
  • [40] Mechanisms of the Accelerated Li+ Conduction in MOF-Based Solid-State Polymer Electrolytes for All-Solid-State Lithium Metal Batteries
    Duan, Song
    Qian, Lanting
    Zheng, Yun
    Zhu, Yanfei
    Liu, Xiang
    Dong, Li
    Yan, Wei
    Zhang, Jiujun
    ADVANCED MATERIALS, 2024, 36 (32)