High-energy radiation shielding characteristics of SeTeSnZn chalcogenide glasses (STSZ ChGs)

被引:4
作者
Saraswat, Vishnu [1 ]
Dahshan, A. [2 ]
Khattari, Z. [3 ]
Mehta, Neeraj [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221005, India
[2] King Khalid Univ, Coll Sci, Dept Phys, Abha 61413, Saudi Arabia
[3] Hashemite Univ, Fac Sci, Dept Phys, POB 330127, Zarqa 13133, Jordan
关键词
Amorphous materials; Glass; Gamma radiation; Attenuation coefficient; Shielding; ATTENUATION COEFFICIENTS; DOSIMETRIC PROPERTIES; XCOM PROGRAM; PHY-X/PSD; CERAMICS; BORATE; SIMULATION; PARAMETERS; OXIDE; IONS;
D O I
10.1016/j.pnucene.2024.105224
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The focus of the current research is to see the effectiveness of some quaternary ChGs as shielding materials for incoming photon energy in the range of 0.015-15.0 MeV. The ChGs addressed in this investigation belong to a quaternary glass system of Se78-xTe20Sn2Znx (x = 0, 2, 4, 6). The online Phy-X/PSD program has been used to deduce several safety factors. The MAC values of the studied glass have the following sequential order: MAC(Zn-0) > MAC(Zn-2) > MAC(Zn-4) > MAC(Zn-6). The most intriguing results are that they have values that are better for shielding than some commercial and conventional glasses (e.g., at E = 1.0 MeV, LAC(RS-520) < LAC(RS-253-G18) < LAC(Zn-0) < LAC(Zn-2) < LAC(Zn-4) < LAC(Zn-6) < LAC(Zn-4) < LAC(Zn-6)). Further, we have determined various shielding parameters (e.g., 0.02 < Half-Value Layer < 4.083 cm(-1), 0.03 < mean free path <6.90) as well as the mechanical properties (e.g., 40.71 < bulk modulus < 50.55 GPa, 12.16 < shear modulus <15.91 GPa, 49.83 < longitudinal modulus <62.47 GPa, 0.358 < Poisson's ratio < 0.368, and 0.032 < micro-hardness <0.0349 GPa). It is also discussed how replacing Se atoms with zinc affects the shielding properties of the SeTeSn glass.
引用
收藏
页数:11
相关论文
共 50 条
[21]   EXPERIMENTAL STUDIES OF SHIELDING AND IRRADIATION EFFECTS AT HIGH-ENERGY ACCELERATOR FACILITIES [J].
Nakashima, H. ;
Sakamoto, Y. ;
Iwamoto, Y. ;
Matsuda, N. ;
Kasugai, Y. ;
Nakane, Y. ;
Masukawa, F. ;
Mokhov, N. V. ;
Leveling, A. F. ;
Boehnlein, D. J. ;
Vaziri, K. ;
Sanami, T. ;
Matsumura, H. ;
Hagiwara, M. ;
Iwase, H. ;
Kinoshita, N. ;
Hirayama, H. ;
Oishi, K. ;
Nakamura, T. ;
Arakawa, H. ;
Shigyo, N. ;
Ishibashi, K. ;
Yashima, H. ;
Nakao, N. ;
Niita, K. .
NUCLEAR TECHNOLOGY, 2009, 168 (02) :482-486
[22]   Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15-300 keV [J].
Waly, El-Sayed A. ;
Al-Qous, Ghada Shkoukani ;
Bourham, Mohamed A. .
RADIATION PHYSICS AND CHEMISTRY, 2018, 150 :120-124
[23]   High-energy radiation damage in zirconia: Modeling results [J].
Zarkadoula, E. ;
Devanathan, R. ;
Weber, W. J. ;
Seaton, M. A. ;
Todorov, I. T. ;
Nordlund, K. ;
Dove, M. T. ;
Trachenko, K. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (08)
[24]   Optical, Spectral, and Radiation-Shielding Properties of High-Lead Phosphate Glasses [J].
V. I. Arbuzov ;
N. Z. Andreeva ;
N. A. Leko ;
S. I. Nikitina ;
N. F. Orlov ;
Yu. K. Fedorov .
Glass Physics and Chemistry, 2005, 31 :583-590
[25]   Impact of BaO Content on Gamma Radiation Shielding Attributes of Borosilicate Glasses at Low Energy Range [J].
Sayyed, M. I. ;
Almuqrin, Aljawhara H. .
SILICON, 2024, 16 (09) :3777-3784
[26]   A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials [J].
Shamshad, L. ;
Rooh, G. ;
Limkitjaroenporn, P. ;
Srisittipokakun, N. ;
Chaiphaksa, W. ;
Kim, H. J. ;
Kaewkhao, J. .
PROGRESS IN NUCLEAR ENERGY, 2017, 97 :53-59
[27]   Dualistic influences of Pr3+ions on the optical and radiation shielding characteristics of alumina bismuth-Sodium phosphate glasses [J].
Saddeek, Yasser B. ;
Aly, K. A. ;
Showahy, A. A. ;
Elsaman, Reda .
RADIATION PHYSICS AND CHEMISTRY, 2023, 207
[28]   Optical response characteristics & radiation shielding properties of Sm3+ions activated tungsten alkali borate glasses for visible laser & radiation shielding applications [J].
Dedeepya, G. ;
Mahamuda, Sk ;
Swapna, K. ;
Venkateswarlu, M. ;
Rao, A. S. .
SOLID STATE SCIENCES, 2025, 163
[29]   High-energy radiation forming chain scission and branching in polypropylene [J].
Otaguro, H. ;
de Lima, L. F. C. P. ;
Parra, D. F. ;
Lugao, A. B. ;
Chinelatto, M. A. ;
Canevarolo, S. V. .
RADIATION PHYSICS AND CHEMISTRY, 2010, 79 (03) :318-324
[30]   Modeling high-energy radiation damage in nuclear and fusion applications [J].
Trachenko, K. ;
Zarkadoula, E. ;
Todorov, I. T. ;
Dove, M. T. ;
Dunstan, D. J. ;
Nordlund, K. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2012, 277 :6-13