Solution formula for generalized two-phase Stokes equations and its applications to maximal regularity: Model problems

被引:0
作者
Kajiwara, Naoto [1 ]
机构
[1] Gifu Univ, Dept Elect Elect & Comp Engn, Appl Phys Course, Yanagido 1-1, Gifu, Gifu 5011193, Japan
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 07期
关键词
solution formula; resolvent estimate; maximal regularity; two-phase Stokes equations; RESOLVENT ESTIMATE; BOUNDARY-CONDITION; R-BOUNDEDNESS; OPERATOR; SYSTEM;
D O I
10.3934/math.2024888
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a solution formula for the two-phase Stokes equations with and without surface tension and gravity over the whole space with a flat interface. The solution formula has already been considered by Shibata and Shimizu. However, we have reconstructed the formula so that we are able to easily prove resolvent and maximal regularity estimates. The previous work required the assumption of additional conditions on normal components. Here, although we consider normal components, the assumption is weaker than before. The method is based on an H infinity-calculus which has already been applied for the Stokes problems with various boundary conditions in the half-space.
引用
收藏
页码:18186 / 18210
页数:25
相关论文
共 39 条
[1]  
Abels H, 2007, INTERFACE FREE BOUND, V9, P31
[2]  
[Anonymous], 1977, J. Soviet. Math., DOI DOI 10.1007/BF01084616
[3]  
[Денисова И.В. Denisova I.V.], 2007, [Записки научных семинаров Санкт-Петербургского отделения математического института им. В.А. Стеклова РАН, Zapiski nauchnykh seminarov Sankt-Peterburgskogo otdeleniya matematicheskogo instituta im. V.A. Steklova RAN], V348, P19
[4]  
Denisova I. V., 2011, Zap. Nauchn. Sem. POMI, V397, P20, DOI [10.1007/s10958-012-0951-8, DOI 10.1007/S10958-012-0951-8]
[5]   Global L2-solvability of a problem governing two-phase fluid motion without surface tension [J].
Denisova, Irina V. .
PORTUGALIAE MATHEMATICA, 2014, 71 (01) :1-24
[6]   PROBLEM OF THE MOTION OF 2 VISCOUS INCOMPRESSIBLE FLUIDS SEPARATED BY A CLOSED FREE INTERFACE [J].
DENISOVA, IV .
ACTA APPLICANDAE MATHEMATICAE, 1994, 37 (1-2) :31-40
[7]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[8]   Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data [J].
Denk, Robert ;
Hieber, Matthias ;
Pruess, Jan .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (01) :193-224
[9]   An Lq-approach to Stokes and Navier-Stokes equations in general domains [J].
Farwig, Reinhard ;
Kozono, Hideo ;
Sohr, Hermann .
ACTA MATHEMATICA, 2005, 195 (01) :21-53
[10]   On the Stokes operator in general unbounded domains [J].
Farwig, Reinhard ;
Kozono, Hideo ;
Sohr, Hermann .
HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (01) :111-136