Enhancing neutral hydrogen production by disrupting the rigid hydrogen bond network on Ru nanoclusters through Nb2O5-mediated water reorientation

被引:43
作者
Chen, Xiao Hui [1 ]
Li, Xiao Lin [1 ]
Li, Ting [1 ]
Jia, Jia Huan [1 ]
Lei, Jing Lei [2 ]
Li, Nian Bing [1 ]
Luo, Hong Qun [1 ]
机构
[1] Southwest Univ, Sch Chem & Chem Engn, Chongqing 400715, Peoples R China
[2] Chongqing Univ, Coll Chem & Chem Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
VIBRATIONAL SPECTROSCOPY; FARADAIC REACTIONS; OXYGEN VACANCY; AC IMPEDANCE; EVOLUTION; MOLECULES; PHOSPHATE; KINETICS;
D O I
10.1039/d4ee01855a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The hydrogen evolution reaction (HER) under neutral conditions is highly important for achieving practical hydrogen production. However, catalysts often exhibit lower activity under neutral conditions, the cause of which remains an unsolved puzzle. By employing ab initio molecular dynamics and in situ surface-enhanced Raman spectroscopy, we investigated the regulatory role of Nb2O5 on interfacial water molecules, which determines the activity of neutral HER. The rigid interfacial water layer in a neutral medium inhibits the transport of intermediates (H2O*/OH*) at the interface between Ru nanoclusters and the electrolyte. However, electron-rich Nb2O5 can overcome this challenge by altering the orientation of H2O molecules to disrupt the H-bond network, thereby increasing the availability of H2O on the surface of catalyst. Finally, Ru/Nb2O5 exhibited excellent activity, even surpassing that of commercial Pt/C catalysts at higher current density. This study provides new avenues for constructing coupled catalysts to activate interfacial water and enhance neutral HER.
引用
收藏
页码:5091 / 5101
页数:11
相关论文
共 74 条
[31]   Superassembly of Surface-Enriched Ru Nanoclusters from Trapping-Bonding Strategy for Efficient Hydrogen Evolution [J].
Liang, Qirui ;
Li, Qizhen ;
Xie, Lei ;
Zeng, Hui ;
Zhou, Shan ;
Huang, Yanan ;
Yan, Miao ;
Zhang, Xin ;
Liu, Tianyi ;
Zeng, Jie ;
Liang, Kang ;
Terasaki, Osamu ;
Zhao, Dongyuan ;
Jiang, Lei ;
Kong, Biao .
ACS NANO, 2022, 16 (05) :7993-8004
[32]   Understanding the Nature of Ammonia Treatment to Synthesize Oxygen Vacancy-Enriched Transition Metal Oxides [J].
Liu, Dali ;
Wang, Changhong ;
Yu, Yifu ;
Zhao, Bo-Hang ;
Wang, Weichao ;
Du, Yonghua ;
Zhang, Bin .
CHEM, 2019, 5 (02) :376-389
[33]   Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media [J].
Lu, Bingzhang ;
Guo, Lin ;
Wu, Feng ;
Peng, Yi ;
Lu, Jia En ;
Smart, Tyler J. ;
Wang, Nan ;
Finfrock, Y. Zou ;
Morris, David ;
Zhang, Peng ;
Li, Ning ;
Gao, Peng ;
Ping, Yuan ;
Chen, Shaowei .
NATURE COMMUNICATIONS, 2019, 10 (1)
[34]  
Mahmood J, 2017, NAT NANOTECHNOL, V12, P441, DOI [10.1038/nnano.2016.304, 10.1038/NNANO.2016.304]
[35]   Elucidation of the atrazine degradation intermediates and dependence on the physicochemical properties of the niobium pentoxide nanostructures [J].
Moreira, Ailton. J. ;
Malafatti, Joao O. D. ;
Sciena, Camila R. ;
Paris, Elaine C. .
RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (07) :2855-2874
[36]   SURFACE-ENHANCED SPECTROSCOPY [J].
MOSKOVITS, M .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :783-826
[37]   Designing Electrolyte Structure to Suppress Hydrogen Evolution Reaction in Aqueous Batteries [J].
Nian, Qingshun ;
Zhang, Xiaoren ;
Feng, Yazhi ;
Liu, Shuang ;
Sun, Tianjiang ;
Zheng, Shibing ;
Ren, Xiaodi ;
Tao, Zhanliang ;
Zhang, Donghui ;
Chen, Jun .
ACS ENERGY LETTERS, 2021, 6 (06) :2174-2180
[38]  
Nian QS, 2019, ANGEW CHEM INT EDIT, V58, P16994, DOI [10.1002/ange.201908913, 10.1002/anie.201908913]
[39]   "Beyond Adsorption" Descriptors in Hydrogen Electrocatalysis [J].
Rebollar, Luis ;
Intikhab, Saad ;
Oliveira, Nicholas J. ;
Yan, Yushan ;
Xu, Bingjun ;
McCrum, Ian T. ;
Snyder, Joshua D. ;
Tang, Maureen H. .
ACS CATALYSIS, 2020, 10 (24) :14747-14762
[40]   Tracking Electrical Fields at the Pt/H2O Interface during Hydrogen Catalysis [J].
Ryu, Jaeyune ;
Surendranath, Yogesh .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (39) :15524-15531