Crossed product C*-algebras associated with p-adic multiplication

被引:0
作者
Hebert, Shelley [1 ]
Klimek, Slawomir [2 ]
Mcbride, Matt [1 ]
Peoples, J. Wilson [3 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, 175 Presidents Cir, Mississippi State, MS 39762 USA
[2] Indiana Univ Purdue Univ Indianapolis, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA
[3] Penn State Univ, Dept Math, 107 McAllister Bld,Univ Pk, State Coll, PA 16802 USA
关键词
C*-algebras; Crossed product algebras; K-theory; STAR-ALGEBRAS; SEMIGROUP;
D O I
10.1007/s43034-024-00372-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and investigate some examples of C*-algebras which are related to multiplication maps in the ring of p-adic integers. We find ideals within these algebras and use the corresponding short exact sequences to compute the K-theory.
引用
收藏
页数:29
相关论文
共 15 条
[1]   FAITHFUL REPRESENTATIONS OF CROSSED-PRODUCTS BY ENDOMORPHISMS [J].
BOYD, S ;
KESWANI, N ;
RAEBURN, I .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (02) :427-436
[2]   C-STAR-ALGEBRAS GENERATED BY WEIGHTED SHIFTS [J].
BUNCE, JW ;
DEDDENS, JA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 23 (03) :257-271
[3]   FAMILY OF SIMPLE C-STAR-ALGEBRAS RELATED TO WEIGHTED SHIFT OPERATORS [J].
BUNCE, JW ;
DEDDENS, JA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 19 (01) :13-24
[4]  
Cuntz J., 2008, Noncommut. Geom, V2, P201, DOI [10.4171/060-1/8, DOI 10.4171/060-1/8]
[5]   A new look at the crossed-product of a C*-algebra by an endomorphism [J].
Exel, R .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :1733-1750
[6]   A new look at the crossed product of a C*-algebra by a semigroup of endomorphisms [J].
Exel, Ruy .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 :749-789
[7]  
Hebert S, 2024, Arxiv, DOI arXiv:2401.08494
[8]   Aspects of noncommutative geometry of Bunce-Deddens algebras [J].
Klimek, Slawomir ;
McBride, Matt ;
Peoples, J. Wilson .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (04) :1391-1423
[9]   On K-theoretic invariants of semigroup C*-algebras attached to number fields [J].
Li, Xin .
ADVANCES IN MATHEMATICS, 2014, 264 :371-395
[10]  
Niven I. M., 1991, An Introduction to the Theory of Numbers, V5th