Second dome of superconductivity in YBa2Cu3O7 at high pressure

被引:0
|
作者
Nokelainen, Johannes [1 ,2 ,3 ,4 ]
Matzelle, Matthew E. [1 ,2 ]
Lane, Christopher [5 ]
Atlam, Nabil [1 ,2 ]
Zhang, Ruiqi [6 ]
Markiewicz, Robert S. [1 ,2 ]
Barbiellini, Bernardo [1 ,2 ,4 ]
Sun, Jianwei [6 ]
Bansil, Arun [1 ,2 ]
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[2] Northeastern Univ, Quantum Mat & Sensing Inst, Burlington, MA 01803 USA
[3] Howard Univ, Dept Phys & Astrophys, Washington, DC 20059 USA
[4] LUT Univ, Sch Engn Sci, Dept Phys, FI-53850 Lappeenranta, Finland
[5] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[6] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA
关键词
ELECTRONIC-STRUCTURE; CHARGE-TRANSFER; TEMPERATURE; DEPENDENCE; TC; MODEL;
D O I
10.1103/PhysRevB.110.L020502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Evidence is growing that a second dome of high-Tc superconductivity can be accessed in the cuprates by increasing the doping beyond the first dome. Here, we use ab initio methods without invoking any free parameters, such as the Hubbard U, to reveal that pressure could turn YBa2Cu3O7 into an ideal candidate for second dome superconductivity, displaying the predicted signature of strongly hybridized dx2-y2 and dz2 orbitals. Notably, pressure is found to induce a phase transition replacing the antiferromagnetic phases with an orbitally degenerate d-d phase. Our study suggests that the origin of the second dome is correlated with the oxygen-hole fraction in the CuO2 planes and the collapse of the pseudogap phase.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Decoupling between the superconducting layers in (YBa2Cu3O7)24/(PrBa2Cu3O7)2 multilayer thin film
    Wang, ZH
    Yang, T
    Fang, J
    Zhang, YH
    Wu, XF
    Luo, H
    Qiu, L
    Ding, SY
    Cao, XW
    PHYSICA C, 2001, 364 : 511 - 514
  • [22] Enhancing the critical current of YBa2Cu3O7 thin films by substrate nanoengineering
    Jones, A.
    Lam, S. K. H.
    Du, J.
    Rubanov, S.
    Pan, A. V.
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (23)
  • [23] A point defect model for YBa2Cu3O7 from density functional theory
    Murphy, Samuel T.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2020, 4 (11): : 1 - 14
  • [24] First-principles calculation of electric field gradients at the Cu sites in YBa2Cu3O7
    Husser, P
    Stoll, E
    Suter, HU
    Meier, PF
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1998, 294 (3-4): : 217 - 224
  • [25] Influence of defect-induced biaxial strain on flux pinning in thick YBa2Cu3O7 layers
    Solovyov, Vyacheslav F.
    Li, Qiang
    Si, Weidong
    Maiorov, Boris
    Haugan, Timothy J.
    MacManus-Driscoll, J. L.
    Yao, H.
    Jia, Q. X.
    Specht, E. D.
    PHYSICAL REVIEW B, 2012, 86 (09):
  • [26] Effects of selective lattice deformation on YbBa2Cu4O8 and YBa2Cu3O7 epitaxial films
    Mito, M.
    Matsui, H.
    Imakyurei, T.
    Deguchi, H.
    Horide, T.
    Matsumoto, K.
    Ichinose, A.
    Yoshida, Y.
    APPLIED PHYSICS LETTERS, 2014, 104 (10)
  • [27] Extended dislocation-based pinning mechanism in superconducting YBa2Cu3O7 films
    Pysarenko, S. V.
    Pan, A. V.
    Dou, S. X.
    Nigam, R.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (09)
  • [28] High Performance of Superconducting YBa2Cu3O7 Thick Films Prepared by Single-Deposition Inkjet Printing
    Villarejo, Bohores
    Pino, Flavio
    Pop, Cornelia
    Ricart, Susagna
    Valles, Ferran
    Mundet, Bernat
    Palau, Anna
    Roura-Grabulosa, Pere
    Farjas, Jordi
    Chamorro, Natalia
    Yanez, Ramon
    Granados, Xavier
    Puig, Teresa
    Obradors, Xavier
    ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (09) : 3948 - 3961
  • [29] Microstructures of YBa2Cu3O7/La0.7Ca0.3MnO3 and La0.7Ca0.3MnO3/YBa2Cu3O7 bi-layers grown on (001)LaAlO3
    Zhang, Y. C.
    Xia, L. H.
    Lu, C. J.
    Xiong, G. C.
    Lian, G. J.
    THIN SOLID FILMS, 2009, 518 (01) : 6 - 9
  • [30] YBa2Cu3O7 nano superconducting quantum interference devices on MgO bicrystal substrates
    Lin, Jianxin
    Mueller, Benedikt
    Linek, Julian
    Karrer, Max
    Wenzel, Malte
    Martinez-Perez, Maria Jose
    Kleiner, Reinhold
    Koelle, Dieter
    NANOSCALE, 2020, 12 (09) : 5658 - 5668